An Overview of Cardiotonic Medicinal Plants from the Perspective of Iranian Traditional Medicine

authors:

avatar Akram Alembagheri ORCID 1 , avatar Homa Hajimehdipoor ORCID 2 , avatar Rasool Choopani ORCID 3 , avatar Somayeh Esmaeili ORCID 2 , *

Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

How To Cite Alembagheri A, Hajimehdipoor H, Choopani R, Esmaeili S. An Overview of Cardiotonic Medicinal Plants from the Perspective of Iranian Traditional Medicine. Jundishapur J Nat Pharm Prod. 2023;18(1):e129338. https://doi.org/10.5812/jjnpp-129338.

Abstract

Context:

Cardiovascular disorders are a leading cause of mortality and morbidity worldwide, especially in people with diabetes. Due to synthetic drugs’ adverse effects, new medicines are needed.

Evidence Acquisition:

Iranian traditional medicine (ITM) is one of the oldest medical systems. In this article, we first introduce a list of cardiotonic medicinal plants based on ITM. Then we review the cardio-related effects of these plants based on electronic databases.

Results:

Among the introduced medicinal plants from ITM, Phyllanthus emblica L., Rosa canina L., Ocimum basilicum L., and Melissa officinalis L. have cardiotonic effects. Also, P. emblica, O. basilicum, M. officinalis, Citrus medica L., Malus domestica Borkh., Elettaria cardamomum (L.) Maton, and R. canina have cardioprotective effects and possess several biological activities that reduce cardiovascular disease risk factors.

Conclusions:

The cardiotonic medicinal plants based on ITM have excellent value; several pharmacological studies have proved some of their cardioprotective and cardiotonic effects. The other plants’ potential for improving the heart’s contractile power as a cardiotonic drug must be evaluated in further pharmacological and clinical studies.

1. Context

Cardiovascular disease (CVD) is a prominent cause of morbidity and mortality worldwide, especially in people with diabetes (1). Diabetes increases reactive oxygen species (ROS) production, insulin resistance, hyperglycemia, cardiac inflammation, and endothelial dysfunction, which can lead to cardiac dysfunction (2-5). These events produce structural and functional cardiac changes that reduce blood flow (3-5). Hyperlipidemia, hypertension, and obesity raise the risk of complications associated with this disease (6). Cardiotonic enhances heart contractility and cardiac function, increasing blood flow to all organs and tissues (7).

Despite advances in CVD treatments, new drugs are needed due to synthetic drug adverse effects. Research on medicinal plants that can be added to diets to minimize CVD risk is also crucial (8). Cardiovascular disease risk factors can be decreased by medicinal plants’ biological effects, such as their antioxidant, anti-inflammatory, sugar-lowering, and lipid-lowering properties (9). Additionally, various plant cardiotonic substances, including digoxin and ouabain, have been identified (10). Overall, the study of medicinal plants’ effectiveness in CVD is recommended to manage the disease (9).

Iranian traditional medicine (ITM) is one of the oldest medical systems using medicinal plants to treat various diseases, including heart disease (11). Tonic medicine was one of the ITM’s recommendations for improving an organ’s physiological activities and increasing its resistance to pathological conditions. In this study, we introduce medicinal plants described as cardiotonic from the perspective of ITM.

2. Evidence Acquisition

To identify medicinal plants having tonifying effect on the heart, this study used six books, including Al-Qanoon fi al-Tibb (The Canon of Medicine) by Avicenna (11), Al-Havi (The Liber Continens) by Rhazes (12), the Makhzan-ol-Adviah, by Aghili Khorasani (13), Al-abniye an- Hagha’egh-al- Adviah written by Heravi (14), Tohfat-al- Mo’menin written by Hakim Mo’men (15) and Al-Shamel fe-Sena’at-e- Tabiee by Gharashi (16). Keywords such as “moghavi-e-ghalb” and “moghavi-e-del,” which mean cardiotonic, were chosen. The matching and translation of medicinal plants’ traditional names into scientific terms were done using the following three books: Encyclopedia of Traditional Medicine (Medicinal Plants) (17), Comparative description of ancient medicinal plants (18), and Scientific names of medicinal plants used in traditional medicine (19). The medicinal plants’ scientific names were searched in electronic databases, including PubMed, Scopus, and Science Direct. Data were collected from inception until November 2022. Only English language articles that full text was available were included. The search terms were the scientific name and common name of each plant combined with “cardiac,” “heart,” “inotrope,” “cardiac dysfunction,” “systolic dysfunction,” “diastolic dysfunction,” “heart failure,” and “cardiomyopathy”. The study in electronic databases for each plant was performed as follows: “scientific name” [Title/Abstract] or “common name” [Title/ Abstract] and “cardiac” [Title/Abstract] or “heart” [Title/Abstract]) or “inotrope” [Title/Abstract]) or “cardiomyopathy” [Title/Abstract]) or “cardiac dysfunction” [Title/ Abstract] or “systolic dysfunction” [Title/Abstract] or “diastolic dysfunction” [Title/Abstract]) or “heart failure” [Title/Abstract]). We have considered in vitro, in vivo, and clinical studies.

3. Results

The selected medicinal plants were ranked based on the frequency of expression of their cardiotonic effect in the nominated books. Rankings 3 and above are listed in Table 1.

Table 1.

Medicinal Plants Described as Cardiotonic Based on Iranian Traditional Medicine

Traditional NameScientific NameCommon NameFamilyAdministrationPart UsedReference
OodAquilaria malaccensis Lam.EaglewoodThymelaeaceaeOral/ InhalationWood(11, 13-15)
TabashirBambusa bambos (L.) Voss (Syn: Bambusa arundinacea Willd.)Giant thorny bambooPoaceaeOralStem(11, 15, 16)
BahmanCentaurea behen L.White BehenAsteraceaeOralRoot(11, 14, 15)
OtrojCitrus medica L.CitronRutaceaeOral/ InhalationFruit(13, 15, 16)
DaronajDoronicum pardalianches L./ Doronicum columnae Ten.Great leopard’s bane; Eastern leopard’s baneAsteraceaeOralRoot(11, 14, 15)
GhaghelehElettaria cardamomum (L.) MatonGreen cardamomZingiberaceaeOralFruit(13, 15, 16)
RasanInula helenium L.ElecampaneAsteraceaeOralRoot(11, 13, 15)
Toffah/ SibMalus domestica Borkh.AppleRosaceaeOral/ InhalationFruit(11, 13-16)
BadranjboyeMelissa officinalis L.Lemon balmLamiaceaeOralLeaf(13-15)
As/ MordMyrtus communis L.MyrtleMyrtaceaeOral/ InhalationLeaf, fruit(11-13, 15, 16)
BaderojOcimum basilicum L.BasilLamiaceaeOralLeaf(11, 14-16)
AmlajPhyllanthus emblica L.Amla/ Indian gooseberryPhyllanthaceaeOralFruit(11, 13, 15)
KamsariPyrus communis L.Common pearRosaceaeOralFruit(13, 15, 16)
NasrinRosa canina L.Dog roseRosaceaeOral/ InhalationFlower(13, 15, 16)
khelafSalix aegyptiaca Fors.Persian willowSalicaceaeOralLeaf(13-15)
SatakhisStachys germanica L.German hedgenettleLamiaceaeOralLeaf(13, 15, 16)

The cardioprotective effects of selected medicinal plants described as cardiotonic from Persian medicine/ITM retrieved from electronic databases are summarized in Table 2.

Table 2.

Cardioprotective Effects of Selected Medicinal Plants Described as Cardiotonic from Iranian Traditional Medicine

Scientific NamePartPreparationMethodDosage/ DurationResultsReference
Cardioprotection
Elettaria cardamomum (L.) MatonFruitAqueous extractDoxorubicin-induced cardiotoxicity in rats, 2.5 mg/kg, i.p., every other day for two weeks200 mg/kg, p.o., 3 weeks↓ Cardiotoxicity, oxidative stress, apoptosis, LDH, CK, cTnT, MDA, NF-κB, caspase 3; ↑ angiogenesis, VEGF, SOD, CAT, GPx(20)
Elettaria cardamomum (L.) MatonFruitAqueous extractIsoproterenol-induced myocardial infarction in rats100 and 200 mg/kg, p.o., 30 days↑ HR, SAP, DAP, MAP; ↑ GSH, SOD, CAT, GSH-Px; ↓ MDA; Protection from myocardial injury: ↓ Myonecrosis, edema, inflammation(21)
Citrus medica L.FruitEthanol extractIsoproterenol-induced cardiomyopathy in rats250 and 500 mg/kg, p.o., 15 days↓ LDH, CK, AST, ALT, LDL, TC, TG, VLDL, MDA, HR; ↑ HDL; 500 mg/kg: No inflammation, ↓ muscle fiber damage(22)
Malus domestica L.FruitVinegarHigh-fat diet-induced obese rats3.5, 7, 14 ml/kg, p.o., 18 weeks↓ Body weight, visceral adipose tissue, TG, LDL, TC, CK-MB, LDH, CRP, fibrinogen, leptin, TNF-α, cardiac hypertrophy, myocardial fibrosis(23)
Melissa officinalis L.Aerial partsHydro alcohol extractThe effect on human umbilical vein endothelial cells under oxidative stress induced by H2O225 - 500 μg/mLAntioxidant, cytoprotective effects(24)
Melissa officinalis L.LeafEthanol extractExperimental autoimmune myocarditis in rats50, 100, or 200, p.o., mg/kg, 3 weeksImproved echocardiographic parameters and cardiac function; ↓ inflammatory infiltrate, collagen content in the; heart tissues; ↓ prooxidants production; ↑ GSH, SOD, CAT(25)
Melissa officinalis L.LeafEthanol extractMyocardial I/R injury in rats50, 100, or 200, p.o., mg/kg, 1 week↓ Prooxidants, fibrosis; 200 mg/kg: ↑ Coronary flow, SOD, CAT; ↑ myocardial contractile function(26)
Melissa officinalis L.Aerial partsAqueous extract-50, 100, or 200, p.o., mg/kg, 1 weekSignificant ECG alterations(27)
Melissa officinalis L.LeafEthanol extractCaCl2-induced arrhythmias in rats, 140 mg/kg, i.v.100 and 200 mg/kg, p.o., 2 weeks↓ HR, VPB, VT, VF(28)
Melissa officinalis L.Aerial partAqueous extractVentricular arrhythmias following ischemia-reperfusion in rats50, 100, 200 and 400 mg/kg, i.p.Mild protective effect against ventricular arrhythmias(29)
Melissa officinalis L.LeafAqueous extractIsolated hearts of rats0.077, 0.77, 7.7, 77 mg/mLNo changes in contractile force; ↓ cardiac rate(30)
Melissa officinalis L.Aerial partEthanol extractDoxorubicin-induced cardiotoxicity in rats, 15 mg/kg, i.p.250, 500 and 750 mg/kg, p.o., 10 days↓ Cardiac damage: ↓ AST, CK, CK-MB; ↓ inflammation: ↓ mRNA levels of NF-kB, COX-2, TNF-α, edema, MPO; ↓ oxidative stress: ↑ SOD, potent free radical scavenging activity; ↓ apoptosis: ↓ Bax, caspase-3(31)
Melissa officinalis L.LeafEthanol extractIschemia-induced arrhythmia in rats25, 50 and 100 mg/kg, p.o., 2 weeksImprovement of I/R induced myocardial dysfunction; ↓ ventricular tachycardia, ventricular ectopic beats, MDA, LDH, CTnI; ↑ SOD; free radical scavenging activity(32)
Melissa officinalis L.Aerial partAqueous extractIsoproterenol induced myocardial injury in rats50, 100 and 200 mg/kg, p.o., 1 week50, 100 mg/kg: ↓ MDA, LVSP; 200 mg/kg: ↑ Contractility, speed of left ventricular relaxation; All doses: ↓ HR, LVEDP(33)
Melissa officinalis L.LeafInfusion 5%Methimazole induced hypothyroidism in ratsInstead of drinking water, 1 week↓ Post ischemic recovery of heart(34)
Melissa officinalis L.LeafCapsule: 500 mg of lyophilized aqueous extractA double-blind randomized placebo-controlled clinical trial, adults with benign palpitations500 mg, BD, 2 weeks↓ Palpitation(35)
Melissa officinalis L.LeafCapsule: 350 mg of hydro alcohol extractA double-blind randomized placebo-controlled clinical trial in patients with type 2 diabetes350 mg, BD, 12 weeks↓ FBS, HbA1c, β-cell activity, TG, hs-CRP, SBP; ↑ HDL-c; no significant change: Total cholesterol, LDL-c, insulin, and HOMA-IR(36)
Melissa officinalis L.LeafCapsule: 500 mg of extractA randomized double-blinded controlled clinical trial in patients with type 2 diabetes500 mg, BD, 3 monthsNo significant metabolic changes compared to the control group(37)
Melissa officinalis L.Leaf; stemEssential oilA double-blinded controlled clinical trial in patients with acute coronary syndrome in the emergency department.Inhalation 2 drops in two aromatherapy phases for 10 min with 90-min intervals↓ Stress, HR, MAP(38)
Ocimumbasilicum L.LeafEthanol extractIsoproterenol induced myocardial infarction in rats10, 20 and 40 mg/kg, BD, p.o., 2 days↓ MDA, myocardial necrosis and fibrosis; ↑ LVSP; inhibition of the elevation of ST-segment; improvement of myocardial contractility(39)
Ocimumbasilicum L.LeafAqueous extractReno vascular hypertensive rats100, 200 and 400 mg/kg, p.o., 4 weeks↓ SBP, DBP, cardiac hypertrophy(40)
Phyllanthus emblica L.FruitEthanol extractIn vitro assay for evaluating extract on doxorubicin toxicity1, 10 and 100 μg/mLThe protective effect on cardiotoxicity at concentration of 100 μg/mL; antioxidant activity(41)
Phyllanthus emblica L.- aIsolated compound (Corilagin) and its analog Dgg16Anti-atherogenic effect on human umbilical vein endothelial cells0.0001 - 1 mmol/L↓ MDA; inhibition of ox-LDL-induced VSMC proliferation(42)
Phyllanthus emblica L.FruitEthanol extractRats fed with high fat diet100 mg/kg, p.o., 3 weeks↓ HR, sympathetic function, LDL; ↑ parasympathetic function(43)
Phyllanthus emblica L.- aIsolated sesquiterpen glycoside; (phyllaemblicin B)Coxsackie virus B3 induced apoptosis and myocarditis in mice4, 8 and 12 mg/kg, i.v., 1 week↓ LDH, CK; ↓ myocardium damage: ↓ Necrosis, inflammatory infiltrates; ↓ apoptosis: ↓ caspase-3, ↑ Bcl-2(44)
Phyllanthus emblica L.FruitEmblicanin-A and B enriched fractionI/R-induced cardiotoxicity in rat100 and 200 mg/kg, BD, p.o., 2 weeks↑ Cardiac SOD, CAT, GSH-Px; ↓LPO(45)
Phyllanthus emblica L.- aAqueous extractI/R-induced cardiotoxicity in rat100 mg/kg, p.o., 30 daysUpregulation of PI3K/Akt/GSK3b/b-catenin; ↑ Bcl-2, eNOS phosphorylation(46)
Phyllanthus emblica L.FruitFresh fruit homogenateI/R-induced cardiotoxicity in rat250, 500 and 750 mg/kg, p.o., 30 days↑Cardiac SOD, CAT, GSH-Px; ↓LPO; myocardial adaptation(47)
Phyllanthus emblica L.FruitJuiceSTZ-induced diabetic myocardial dysfunction in rat1 ml/kg, p.o., 8 weeks↓ VLDL, LDL, TG, glucose, LDH, CK-MB, BP; ↑ HDL, HR, force of contraction; antioxidant activity: ↑ SOD, CAT, GSH, ↓ MDA; restoration of hemodynamic parameters; ↓ LV collagen and protein content: ↓ cardiac stiffness and fibrosis(48)
Phyllanthus emblica L.- aPowderHigh cholesterol diet induced atherosclerosis in rat100 mg/kg, p.o., 30 days↓ VLDL, LDL, LDH, AST, ALT; ↑ HDL; antioxidant activity: ↓ Oxidative stress, ↑ SOD, CAT, GPx(49)
Phyllanthus emblica L.FruitEthanol extractRat fed with high fat diet100 and 200 mg/kg, 3 weeks↓ MDA; cardiac protection(50)
Phyllanthus emblica L.FruitPowder (2.5% of powdered chow food)2K1C ratsRats fed with food supplemented amla powder, 4 weeks↓ MDA, NO, APOP; ↑ antioxidant activity; ↓ inflammation, fibrosis(51)
Phyllanthus emblica L.FruitHydro alcohol extractIsoproterenol-induced; cardiotoxicity in rats100, 250 and 500 mg/kg, p.o., 30 days250, 500 mg/kg: ↑ SAP, DAP, MAP, HR, SOD, CAT, GPx, GSH; 250, 500 mg/kg: Myocardial protection: ↓ Inflammation, myonecrosis; ↓ LVEDP, LPO; restoration of hemodynamic parameters and cardiac function(52)
Phyllanthus emblica L.- aCapsule 250, 500 mgA randomized, double-blind, controlled study, patients with type 2 diabetes mellitus1 and 2 capsule, BD, 12 weeks↓ RI, MDA, CRP, LDL, TG, TC, HbA1c; ↑GSH, HDL; improvement of endothelial function(53)
Rosa canina L.FlowerAromatic waterIschemia-reperfusion injuries in the isolated rat heart0.416%, 1.25%, 2.5% and 4.16%Negative chronotropic effect; Positive inotropic effect; ↑ LVDP, contractile force(54)
Rosa canina L.FruitMethanol extractHeat shock-induced cardiomyocyte injury in rats250, 500 and 1000 mg/mL, p.o., 2 weeks500 and 1000 mg/mL: ↓ ROS, cleaved caspase 8, cardiac injury; 500 and 1000 mg/mL: ↑ Pro-caspase 8; inhibition of PERK/eIF2α/CHOP signaling(55)
Rosa canina L.FruitJuiceA randomized, double-blind, cross-over clinical study, obese and non-diabetic patients40 g, 6 weeks↓ SBP, TC, LDL, LDL/HDL(56)

4. Discussion

Cardiovascular diseases are a leading cause of death globally (57). Diabetes, especially type 2, increases CVD risk (1). Insulin resistance leads to hyperglycemia and dyslipidemia. Hyperglycemia causes inflammation, oxidative stress, endothelial dysfunction, and hypertension (58, 59). Besides, insulin resistance decreases cardiomyocytes’ metabolic flexibility, resulting in lipid accumulation and lipotoxicity in the heart (58). On the other hand, endothelial dysfunction and dyslipidemia contributing to atherosclerosis. Normalizing oxidative stress, hyperlipidemia, and hyperglycemia prevent cardiac dysfunction caused by diabetes (60).

In this study, we reviewed cardiotonic medicinal plants from ITM and their cardioprotective benefits. According to the results, 16 medicinal plants were the most commonly mentioned cardiotonics in prominent ITM books (Table 1). Amla, basil, lemon balm, and dog rose are cardiotonic among these plants. They enhanced heart contractility. Several pharmacological studies have demonstrated lemon balm and amla’s cardioprotective effects, which are related to flavonoids and phenolic compounds, including emblicanin-A and B, ellagic acid, caffeic acid, and gallic acid (45, 61-63).

Seven plants in Table 2 exhibit cardioprotective properties. Reactive oxygen species and oxidant/antioxidant imbalance contribute to CVD. All these plants scavenge free radicals and boost antioxidant enzymes, including SOD, CAT, and GSH. Also, amla, citron, and dog rose are rich in vitamin C, an exogenous antioxidant (47, 64-66). These plants with anti-inflammatory properties improve CVD (62, 63, 67-72). Cardiac damage raises LVEDP. Lemon balm and amla minimized this impact (33). Also, amla, basil, and apple decreased heart hypertrophy, which is evident in cardiac dysfunction. Hyperglycemia, hyperlipidemia, and hypertension are CVD risk factors. Based on several studies, the plants in Table 2 improve these risk factors (62, 63, 67-72).

Diet is vital for cardiovascular health (3). Diet adjustment is one of the most straightforward strategies to lower heart disease risk factors (3). Some studies link vegetable and fruit consumption with a lower risk of cardiovascular disease (73). Medicinal herbs, especially amla, apple, and citron, are widely used worldwide, proving their safety; they can be incorporated into cardiovascular patients’ diets.

Iranian traditional medicine recommends aromatherapy (74). Smelling apple, citron, dog rose, myrtle, and eaglewood were advised for heart health. In line with ITM, several studies have shown the health benefits of aromatherapy (75).

Other medicinal plants listed in Table 1, Persian willow, myrtle, elecampane, common pear, and eaglewood, have flavonoids and antioxidant activity, which may protect the heart from cardiac damage (76-81).

4.1. Conclusions

In conclusion, several pharmacological studies have proven cardioprotective and cardiotonic benefits of ITM-based medicinal plants. Melissa officinalis, P. emblica, R. canina, and O. basilicum are cardiotonic. Further pharmacological and clinical studies must investigate other plants’ cardiotonic potential.

References

  • 1.

    Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-502. [PubMed ID: 27297342]. [PubMed Central ID: PMC4910510]. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.

  • 2.

    Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol. 2017;70(2):230-51. [PubMed ID: 28683970]. [PubMed Central ID: PMC5568826]. https://doi.org/10.1016/j.jacc.2017.05.043.

  • 3.

    Williams LJ, Nye BG, Wende AR. Diabetes-Related Cardiac Dysfunction. Endocrinol Metab (Seoul). 2017;32(2):171-9. [PubMed ID: 28685508]. [PubMed Central ID: PMC5503861]. https://doi.org/10.3803/EnM.2017.32.2.171.

  • 4.

    Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. 2019;40(1):1-8. [PubMed ID: 29867137]. [PubMed Central ID: PMC6318313]. https://doi.org/10.1038/s41401-018-0042-6.

  • 5.

    Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21-8. [PubMed ID: 28776083]. [PubMed Central ID: PMC5720913]. https://doi.org/10.1007/s00125-017-4390-4.

  • 6.

    Sobhani Z, Nami SR, Emami SA, Sahebkar A, Javadi B. Medicinal Plants Targeting Cardiovascular Diseases in View of Avicenna. Curr Pharm Des. 2017;23(17):2428-43. [PubMed ID: 28215156]. https://doi.org/10.2174/1381612823666170215104101.

  • 7.

    Vardanyan RS, Hruby VJ. Cardiotonic Drugs. In: Vardanyan RS, Hruby VJ, editors. Synthesis of Essential Drugs. Amsterdam, The Netherlands: Elsevier; 2006. p. 237-43. https://doi.org/10.1016/b978-044452166-8/50017-0.

  • 8.

    Sedighi M, Sewell RDE, Nazari A, Abbaszadeh S, Cheraghi M, Amini A, et al. A Review on the Most Important Medicinal Plants Effective in Cardiac Ischemia-Reperfusion Injury. Curr Pharm Des. 2019;25(3):352-8. [PubMed ID: 30931852]. https://doi.org/10.2174/1381612825666190329144016.

  • 9.

    Michel J, Abd Rani NZ, Husain K. A Review on the Potential Use of Medicinal Plants From Asteraceae and Lamiaceae Plant Family in Cardiovascular Diseases. Front Pharmacol. 2020;11:852. [PubMed ID: 32581807]. [PubMed Central ID: PMC7291392]. https://doi.org/10.3389/fphar.2020.00852.

  • 10.

    Mandal SC, Mandal V, Das AK. What All Should Know about Plant Drugs. In: Mandal SC, Mandal V, Das AK, editors. Essentials of Botanical Extraction. Amsterdam, The Netherlands: Elsevier; 2015. p. 35-61. https://doi.org/10.1016/b978-0-12-802325-9.00004-5.

  • 11.

    Avicenna. [The Canon of Medicine]. Beirut, Lebanon: Dar ehya-e-toras-el-arabi; 2005. Arabic.

  • 12.

    Rhazes. [Al-Havi]. Beirut, Lebanon: Dar ehya-e-toras-el-arabi; 2001. Arabic.

  • 13.

    Aghili Khorasani M. [Makhzan-ol-Advieh]. Kalkate, India; 1844. Arabic.

  • 14.

    Heravi M. [Al-abniye an- Hagha'egh-al- Adviah]. Tehran, Iran: Tehran University Press; 1968. Arabic.

  • 15.

    Mo'men H. [Tohfat-al- Mo'menin]. Qom, Iran: Noore vahy; 2012. Arabic.

  • 16.

    Gharashi EN. [Al-Shamel fe-Sena'at-e- Tabiee]. Tehran, Iran: Iran University of Medical Sciences; 2009. Arabic.

  • 17.

    Soltani A. [Encyclopedia of Traditional Medicine (Medicinal Plants)]. Tehran, Iran: Arjmand press; 2006. Persian.

  • 18.

    Okhovat A, Ghahreman A. [Comparative description of ancient medicinal plants]. Tehran, Iran: Tehran University Press; 2010. Persian.

  • 19.

    Dini M. [Scientific names of medicinal plants used in traditional medicine]. Tehran, Iran: Forests and Range lands Research Institute; 2006. Persian.

  • 20.

    Abu Gazia M, El-Magd MA. Ameliorative Effect of Cardamom Aqueous Extract on Doxorubicin-Induced Cardiotoxicity in Rats. Cells Tissues Organs. 2018;206(1-2):62-72. [PubMed ID: 30716735]. https://doi.org/10.1159/000496109.

  • 21.

    Goyal SN, Sharma C, Mahajan UB, Patil CR, Agrawal YO, Kumari S, et al. Protective Effects of Cardamom in Isoproterenol-Induced Myocardial Infarction in Rats. Int J Mol Sci. 2015;16(11):27457-69. [PubMed ID: 26593900]. [PubMed Central ID: PMC4661898]. https://doi.org/10.3390/ijms161126040.

  • 22.

    Al-Yahya MA, Mothana RA, Al-Said MS, El-Tahir KE, Al-Sohaibani M, Rafatullah S. Citrus medica "Otroj": attenuates oxidative stress and cardiac dysrhythmia in isoproterenol-induced cardiomyopathy in rats. Nutrients. 2013;5(11):4269-83. [PubMed ID: 24169505]. [PubMed Central ID: PMC3847729]. https://doi.org/10.3390/nu5114269.

  • 23.

    Bounihi A, Bitam A, Bouazza A, Yargui L, Koceir EA. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. Pharm Biol. 2017;55(1):43-52. [PubMed ID: 27595296]. [PubMed Central ID: PMC7011948]. https://doi.org/10.1080/13880209.2016.1226369.

  • 24.

    Safaeian L, Sajjadi SE, Javanmard SH, Montazeri H, Samani F. Protective effect of Melissa officinalis extract against H(2)O(2)-induced oxidative stress in human vascular endothelial cells. Res Pharm Sci. 2016;11(5):383-9. [PubMed ID: 27920820]. [PubMed Central ID: PMC5122827]. https://doi.org/10.4103/1735-5362.192488.

  • 25.

    Draginic ND, Jakovljevic VL, Jeremic JN, Srejovic IM, Andjic MM, Rankovic MR, et al. Melissa officinalis L. Supplementation Provides Cardioprotection in a Rat Model of Experimental Autoimmune Myocarditis. Oxid Med Cell Longev. 2022;2022:1344946. [PubMed ID: 35265259]. [PubMed Central ID: PMC8901324]. https://doi.org/10.1155/2022/1344946.

  • 26.

    Draginic N, Milosavljevic I, Andjic M, Jeremic J, Nikolic M, Sretenovic J, et al. Short-Term Administration of Lemon Balm Extract Ameliorates Myocardial Ischemia/Reperfusion Injury: Focus on Oxidative Stress. Pharmaceuticals (Basel). 2022;15(7). [PubMed ID: 35890139]. [PubMed Central ID: PMC9317599]. https://doi.org/10.3390/ph15070840.

  • 27.

    Joukar S, Asadipour H. Evaluation of Melissa officinalis (Lemon Balm) Effects on Heart Electrical System. Res Cardiovasc Med. 2015;4(2). e27013. [PubMed ID: 26396973]. [PubMed Central ID: PMC4576163]. https://doi.org/10.5812/cardiovascmed.4(2)2015.27013.

  • 28.

    Akhondali Z, Dianat M, Radan M. Negative Chronotropic and Antidysrhythmic Effects of Hydroalcoholic Extract of Lemon Balm (Melissa Officinalis L.) on CaCl2-Induced Arrhythmias in Rats. Electron Physician. 2015;7(1):971-6. [PubMed ID: 26052407]. [PubMed Central ID: PMC4455297]. https://doi.org/10.14661/2015.971-976.

  • 29.

    Joukar S, Zarisfi Z, Sepehri G, Bashiri A. Efficacy of Melissa officinalis in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: a comparison with amiodarone. Med Princ Pract. 2014;23(4):340-5. [PubMed ID: 24942615]. [PubMed Central ID: PMC5586902]. https://doi.org/10.1159/000363452.

  • 30.

    Gazola R, Machado D, Ruggiero C, Singi G, Macedo Alexandre M. Lippia alba, Melissa officinalis and Cymbopogon citratus: effects of the aqueous extracts on the isolated hearts of rats. Pharmacol Res. 2004;50(5):477-80. [PubMed ID: 15458767]. https://doi.org/10.1016/j.phrs.2004.01.012.

  • 31.

    Hamza AA, Ahmed MM, Elwey HM, Amin A. Melissa officinalis Protects against Doxorubicin-Induced Cardiotoxicity in Rats and Potentiates Its Anticancer Activity on MCF-7 Cells. PLoS One. 2016;11(11). e0167049. [PubMed ID: 27880817]. [PubMed Central ID: PMC5120835]. https://doi.org/10.1371/journal.pone.0167049.

  • 32.

    Sedighi M, Faghihi M, Rafieian-Kopaei M, Rasoulian B, Nazari A. Cardioprotective Effect of Ethanolic Leaf Extract of Melissa Officinalis L Against Regional Ischemia-Induced Arrhythmia and Heart Injury after Five Days of Reperfusion in Rats. Iran J Pharm Res. 2019;18(3):1530-42. [PubMed ID: 32641961]. [PubMed Central ID: PMC6934948]. https://doi.org/10.22037/ijpr.2019.1100761.

  • 33.

    Joukar S, Asadipour H, Sheibani M, Najafipour H, Dabiri S. The effects of Melissa officinalis (lemon balm) pretreatment on the resistance of the heart to myocardial injury. Pharm Biol. 2016;54(6):1005-13. [PubMed ID: 26457827]. https://doi.org/10.3109/13880209.2015.1091845.

  • 34.

    Ragone MI, Bayley M, Lazarte ML, Clavellino L, Prieto JJ, Ruiz ME, et al. Oral administration of Melissa officinalis or Bahuinia forficata infusions reduce the postischemic recovery of hearts from hypothyroid rats. PharmacologyOnLine. 2019;3:1-14.

  • 35.

    Alijaniha F, Naseri M, Afsharypuor S, Fallahi F, Noorbala A, Mosaddegh M, et al. Heart palpitation relief with Melissa officinalis leaf extract: double blind, randomized, placebo controlled trial of efficacy and safety. J Ethnopharmacol. 2015;164:378-84. [PubMed ID: 25680840]. https://doi.org/10.1016/j.jep.2015.02.007.

  • 36.

    Asadi A, Shidfar F, Safari M, Hosseini AF, Fallah Huseini H, Heidari I, et al. Efficacy of Melissa officinalis L. (lemon balm) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: A randomized, double-blind, clinical trial. Phytother Res. 2019;33(3):651-9. [PubMed ID: 30548118]. https://doi.org/10.1002/ptr.6254.

  • 37.

    Nayebi N, Esteghamati A, Meysamie A, Khalili N, Kamalinejad M, Emtiazy M, et al. The effects of a Melissa officinalis L. based product on metabolic parameters in patients with type 2 diabetes mellitus: A randomized double-blinded controlled clinical trial. J Complement Integr Med. 2019;16(3). [PubMed ID: 30681971]. https://doi.org/10.1515/jcim-2018-0088.

  • 38.

    Veiskaramian A, Gholami M, Yarahmadi S, Amanolahi Baharvand P, Birjandi M. Effect of aromatherapy with Melissa essential oil on stress and hemodynamic parameters in acute coronary syndrome patients: A clinical trial in the emergency department. Complement Ther Clin Pract. 2021;44:101436. [PubMed ID: 34247027]. https://doi.org/10.1016/j.ctcp.2021.101436.

  • 39.

    Fathiazad F, Matlobi A, Khorrami A, Hamedeyazdan S, Soraya H, Hammami M, et al. Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats. Daru. 2012;20(1):87. [PubMed ID: 23351503]. [PubMed Central ID: PMC3556047]. https://doi.org/10.1186/2008-2231-20-87.

  • 40.

    Umar A, Imam G, Yimin W, Kerim P, Tohti I, Berke B, et al. Antihypertensive effects of Ocimum basilicum L. (OBL) on blood pressure in renovascular hypertensive rats. Hypertens Res. 2010;33(7):727-30. [PubMed ID: 20448636]. https://doi.org/10.1038/hr.2010.64.

  • 41.

    Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Bauer JA. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol. 2005;96(1):80-7. [PubMed ID: 15667600]. https://doi.org/10.1111/j.1742-7843.2005.pto960112.x.

  • 42.

    Duan W, Yu Y, Zhang L. Antiatherogenic effects of phyllanthus emblica associated with corilagin and its analogue. Yakugaku Zasshi. 2005;125(7):587-91. [PubMed ID: 15997216]. https://doi.org/10.1248/yakushi.125.587.

  • 43.

    Kanthe PS, Patil BS, Bagali SC, Reddy RC, Aithala MR, Das KK. Protective effects of Ethanolic Extract of Emblica officinalis (amla) on Cardiovascular Pathophysiology of Rats, Fed with High Fat Diet. J Clin Diagn Res. 2017;11(9):CC05-9. [PubMed ID: 29207698]. [PubMed Central ID: PMC5713720]. https://doi.org/10.7860/JCDR/2017/28474.10628.

  • 44.

    Wang YF, Wang XY, Ren Z, Qian CW, Li YC, Kaio K, et al. Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis. Antiviral Res. 2009;84(2):150-8. [PubMed ID: 19699238]. https://doi.org/10.1016/j.antiviral.2009.08.004.

  • 45.

    Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Effect of bioactive tannoid principles of Emblica officinalis on ischemia-reperfusion-induced oxidative stress in rat heart. Phytomedicine. 2002;9(2):171-4. [PubMed ID: 11995952]. https://doi.org/10.1078/0944-7113-00090.

  • 46.

    Thirunavukkarasu M, Selvaraju V, Tapias L, Sanchez JA, Palesty JA, Maulik N. Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: the role of PI3-kinase/glycogen synthase kinase 3beta/beta-catenin pathway. J Physiol Biochem. 2015;71(4):623-33. [PubMed ID: 26342597]. https://doi.org/10.1007/s13105-015-0426-8.

  • 47.

    Rajak S, Banerjee SK, Sood S, Dinda AK, Gupta YK, Gupta SK, et al. Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic-reperfusion injury in rats. Phytother Res. 2004;18(1):54-60. [PubMed ID: 14750202]. https://doi.org/10.1002/ptr.1367.

  • 48.

    Patel SS, Goyal RK. Prevention of diabetes-induced myocardial dysfunction in rats using the juice of the Emblica officinalis fruit. Exp Clin Cardiol. 2011;16(3):87-91. [PubMed ID: 22065939]. [PubMed Central ID: PMC3209545].

  • 49.

    Indumathi U, Kanchana K, Sachdanandam P. Protective role of coenzyme Q10, riboflavin, niacin, selenium (CoRNS) and Emblica officinalis on cardiac abnormalities in experimental atherosclerosis. Biomed Prev Nutr. 2013;3(4):313-8. https://doi.org/10.1016/j.bionut.2013.03.010.

  • 50.

    Patil BS, Kanthe PS, Reddy CR, Das KK. Emblica officinalis (Amla) Ameliorates High-Fat Diet Induced Alteration of Cardiovascular Pathophysiology. Cardiovasc Hematol Agents Med Chem. 2019;17(1):52-63. [PubMed ID: 30963985]. [PubMed Central ID: PMC6864597]. https://doi.org/10.2174/1871525717666190409120018.

  • 51.

    Rahman MM, Ferdous KU, Roy S, Nitul IA, Mamun F, Hossain MH, et al. Polyphenolic compounds of amla prevent oxidative stress and fibrosis in the kidney and heart of 2K1C rats. Food Sci Nutr. 2020;8(7):3578-89. [PubMed ID: 32724620]. [PubMed Central ID: PMC7382108]. https://doi.org/10.1002/fsn3.1640.

  • 52.

    Ojha S, Golechha M, Kumari S, Arya DS. Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats. Toxicol Ind Health. 2012;28(5):399-411. [PubMed ID: 22033422]. https://doi.org/10.1177/0748233711413798.

  • 53.

    Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study. Diabetes Metab Syndr Obes. 2013;6:275-84. [PubMed ID: 23935377]. [PubMed Central ID: PMC3735284]. https://doi.org/10.2147/DMSO.S46341.

  • 54.

    Ghorbani F, Keshavarz M, Faghihi M, Imani AR. The protective effect of Rosa canina distilled water on ischemia-reperfusion injuries in the isolated rat heart. Int J Biosci. 2015;6(5):25-33. https://doi.org/10.12692/ijb/6.5.25-33.

  • 55.

    Nasrolahi A, Hosseini L, Farokhi-Sisakht F, Mahmoudi J, Karimi P, Badalzadeh R, et al. Cardioprotective effect of Rosa canina L. methanolic extract on heat shock induced cardiomyocyte injury: An experimental study. J Cardiovasc Thorac Res. 2020;12(4):286-93. [PubMed ID: 33510877]. [PubMed Central ID: PMC7828751]. https://doi.org/10.34172/jcvtr.2020.47.

  • 56.

    Andersson U, Berger K, Hogberg A, Landin-Olsson M, Holm C. Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: a randomized, double-blind, cross-over investigation in obese persons. Eur J Clin Nutr. 2012;66(5):585-90. [PubMed ID: 22166897]. [PubMed Central ID: PMC3343291]. https://doi.org/10.1038/ejcn.2011.203.

  • 57.

    Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113(Pt A):600-9. [PubMed ID: 27697647]. https://doi.org/10.1016/j.phrs.2016.09.040.

  • 58.

    Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. [PubMed ID: 30170598]. [PubMed Central ID: PMC6119242]. https://doi.org/10.1186/s12933-018-0762-4.

  • 59.

    Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med. 2012;17(5):330-41. [PubMed ID: 22814999]. https://doi.org/10.1177/1358863X12450094.

  • 60.

    Min J, Weitian Z, Peng C, Yan P, Bo Z, Yan W, et al. Correlation between insulin-induced estrogen receptor methylation and atherosclerosis. Cardiovasc Diabetol. 2016;15(1):156. [PubMed ID: 27832775]. [PubMed Central ID: PMC5105242]. https://doi.org/10.1186/s12933-016-0471-9.

  • 61.

    Variya BC, Bakrania AK, Patel SS. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res. 2016;111:180-200. [PubMed ID: 27320046]. https://doi.org/10.1016/j.phrs.2016.06.013.

  • 62.

    Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, et al. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol. 2022;282:114570. [PubMed ID: 34480995]. https://doi.org/10.1016/j.jep.2021.114570.

  • 63.

    Draginic N, Jakovljevic V, Andjic M, Jeremic J, Srejovic I, Rankovic M, et al. Melissa officinalis L. as a Nutritional Strategy for Cardioprotection. Front Physiol. 2021;12:661778. [PubMed ID: 33967832]. [PubMed Central ID: PMC8100328]. https://doi.org/10.3389/fphys.2021.661778.

  • 64.

    Hashem-Dabaghian F, Ziaee M, Ghaffari S, Nabati F, Kianbakht S. A systematic review on the cardiovascular pharmacology of Emblica officinalis Gaertn. J Cardiovasc Thorac Res. 2018;10(3):118-28. [PubMed ID: 30386531]. [PubMed Central ID: PMC6203864]. https://doi.org/10.15171/jcvtr.2018.20.

  • 65.

    de Oliveira Raphaelli C, Dos Santos Pereira E, Camargo TM, Vinholes J, Rombaldi CV, Vizzotto M, et al. Apple Phenolic Extracts Strongly Inhibit alpha-Glucosidase Activity. Plant Foods Hum Nutr. 2019;74(3):430-5. [PubMed ID: 31302831]. https://doi.org/10.1007/s11130-019-00757-3.

  • 66.

    Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3(4):228-37. [PubMed ID: 20972369]. [PubMed Central ID: PMC2952083]. https://doi.org/10.4161/oxim.3.4.12858.

  • 67.

    Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, et al. Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. Oxid Med Cell Longev. 2021;2021:1-20. https://doi.org/10.1155/2021/6584693.

  • 68.

    Chhikara N, Kour R, Jaglan S, Gupta P, Gat Y, Panghal A. Citrus medica: nutritional, phytochemical composition and health benefits - a review. Food Funct. 2018;9(4):1978-92. [PubMed ID: 29594287]. https://doi.org/10.1039/c7fo02035j.

  • 69.

    Khazaei M, Khazaei MR, Pazhouhi M. An overview of therapeutic potentials of Rosa canina: A traditionally valuable herb. World Cancer Research Journal. 2020;7:1580. https://doi.org/10.32113/wcrj_20205_1580.

  • 70.

    Brandão LB, Santos LL, Martins RL, Rodrigues ABL, Pena da Costa AL, Faustino CG, et al. The Potential Effects of Species Ocimum basilicum L. on Health: A Review of the Chemical and Biological Studies. Pharmacogn Rev. 2022;16(31):22-6. https://doi.org/10.5530/phrev.2022.16.4.

  • 71.

    Kumar S, Kumari R. Traditional, Phytochemical and Biological activities of Elettaria cardamomum (L.) Maton–A review. Int J Pharmaceut Sci Res. 2021;12:2320-5148.

  • 72.

    Patocka J, Bhardwaj K, Klimova B, Nepovimova E, Wu Q, Landi M, et al. Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. Plants (Basel). 2020;9(11). [PubMed ID: 33105724]. [PubMed Central ID: PMC7690411]. https://doi.org/10.3390/plants9111408.

  • 73.

    Serra AT, Rocha J, Sepodes B, Matias AA, Feliciano RP, de Carvalho A, et al. Evaluation of cardiovascular protective effect of different apple varieties - Correlation of response with composition. Food Chem. 2012;135(4):2378-86. [PubMed ID: 22980816]. https://doi.org/10.1016/j.foodchem.2012.07.067.

  • 74.

    Aliannezhadi V, Vaghasloo MA, Keshavarz M, Sadeghi S, Ilkhani R. A Review of Aromatherapy for Cardiovascular Disorders: From Persian Medicine to Current Evidence. Crescent Journal of Medical and Biological Sciences. 2021;8(4).

  • 75.

    Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan S, Anwar F. Essential oils used in aromatherapy: A systemic review. Asian Pac J Trop Biomed. 2015;5(8):601-11. https://doi.org/10.1016/j.apjtb.2015.05.007.

  • 76.

    Razak R, Ismail F, Isa MLM, Wahab AYA, Muhammad H, Ramli R, et al. Ameliorative Effects of Aquilaria malaccensis Leaves Aqueous Extract on Reproductive Toxicity Induced by Cyclophosphamide in Male Rats. Malays J Med Sci. 2019;26(1):44-57. [PubMed ID: 30914892]. [PubMed Central ID: PMC6419872]. https://doi.org/10.21315/mjms2019.26.1.4.

  • 77.

    Naghibi F, Esmaeili S, Abdullah NR, Nateghpour M, Taghvai M, Kamkar S, et al. In vitro and in vivo antimalarial evaluations of myrtle extract, a plant traditionally used for treatment of parasitic disorders. Biomed Res Int. 2013;2013:316185. [PubMed ID: 24455686]. [PubMed Central ID: PMC3885200]. https://doi.org/10.1155/2013/316185.

  • 78.

    Azzini E, Maiani G, Durazzo A, Foddai MS, Intorre F, Venneria E, et al. S. Giovanni Varieties (Pyrus communis L.): Antioxidant Properties and Phytochemical Characteristics. Oxid Med Cell Longev. 2019;2019:6714103. [PubMed ID: 31281586]. [PubMed Central ID: PMC6589222]. https://doi.org/10.1155/2019/6714103.

  • 79.

    Zlatic N, Jakovljevic D, Stankovic M. Temporal, Plant Part, and Interpopulation Variability of Secondary Metabolites and Antioxidant Activity of Inula helenium L. Plants (Basel). 2019;8(6). [PubMed ID: 31213017]. [PubMed Central ID: PMC6630240]. https://doi.org/10.3390/plants8060179.

  • 80.

    Harassi Y, Tilaoui M, Idir A, Frederic J, Baudino S, Ajouaoi S, et al. Phytochemical analysis, cytotoxic and antioxidant activities of Myrtus communis essential oil from Morocco. J Complement Integr Med. 2019;16(3). [PubMed ID: 30661057]. https://doi.org/10.1515/jcim-2018-0100.

  • 81.

    Nauman M, Kale RK, Singh RP. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation. BMC Complement Altern Med. 2018;18(1):81. [PubMed ID: 29514630]. [PubMed Central ID: PMC5842599]. https://doi.org/10.1186/s12906-018-2143-7.