Abstract
Context:
Ziziphora clinopodioides is a well-known aromatic and culinary species of the genus Ziziphora. It has been used in Iranian folk medicine for healing digestive issues and fever. Extensive studies have been published on the characterization of the essential oil of this aromatic plant and its related biological properties. This study aimed to review the chemical composition and biological properties of Z. clinopodioides essential oil.Evidence Acquisition:
The literature survey was performed using search engines Google Scholar, Scopus, and PubMed, with the search period spanning within 1990 to 2022.Results:
The investigation of Z. clinopodioides essential oil composition revealed that oxygenated monoterpenoids, such as pulegone and related menthane-type structures, in addition to aromatic monoterpenoids, such as carvacrol and thymol, comprise the majority of Z. clinopodioides essential oil components. Due to the high monoterpenoid content, Z. clinopodioides essential oil possesses outstanding biological properties, including antibacterial, antifungal, and insecticidal activity.Conclusions:
Ziziphora clinopodioides essential oil could be considered a natural, rich source of bioactive monoterpenoids encompassing potent biological activities. Therefore, based on the reported properties, it seems that Z. clinopodioides essential oil potentially has widespread industrial applications.Keywords
Ziziphora clinopodioides Essential Oil Monoterpenoids Antibacterial Activity Antifungal Activity
1. Context
Ziziphora is a genus of the Lamiaceae family, consisting of 17 aromatic herbs or subshrubs, which can be annual or perennial. These plants are found across Southern and Eastern Europe, North-West Africa, and Asia, extending to the Himalayas. Ziziphora clinopodioides Lam., known as “kakooti-koohi” in Persian, is one of the most well-known aromatic and edible species within this genus. It is widely distributed in Asia and Europe, especially in Turkey and the western regions of Iran (1).
Ziziphora clinopodioides is a highly branched perennial herb with stems that can reach a height of up to 50 cm. It features white to red-colored flowers. In Iran, there are nine subspecies of Z. clinopodioides (2). In traditional Iranian folk medicine, it has been used in the form of a decoction for various purposes, such as a stomach tonic, sedative, carminative, and antipyretic agent (3). Additionally, Z. clinopodioides is considered an effective remedy for various conditions, including cough, the common cold, bronchitis, headache, viral diseases, diarrhea, nausea, typhus, inflammation, edema, cardiovascular diseases, insomnia, diabetes, and asthma (4, 5). Furthermore, in Iran, the dried aerial parts of this plant are used as a spice to flavor food and beverages (6).
Essential oils are composed of volatile components found in aromatic plants and can be viewed as natural preservatives due to their high content of bioactive natural products, such as monoterpenoids. These essential oils also possess significant biological properties, including antimicrobial, antifungal, and antioxidant activity (7).
2. Evidence Acquisition
A review of the literature revealed that the chemical composition and biological properties of the essential oil of the aforementioned species have been investigated in various studies. This article compiles the major chemical constituents and categorizes the biological properties of Z. clinopodioides essential oil. The literature survey was conducted using search engines such as Google Scholar, Scopus, and PubMed. The search spanned within 1990 to 2022, and the inclusion criteria encompassed phytochemical components and reported biological activities of Z. clinopodioides essential oil.
3. Results
3.1. Essential Oil Composition
Table 1 provides a summary of detailed information regarding the essential oil composition of Z. clinopodioides. Essential oil yields ranged from 0.1% to 4.5% based on the weight of dry plant material. Most of the plants studied were collected from various regions of Iran. Additionally, there are reports of plant species collected from China, Turkey, and other Asian countries listed in the table. The primary method employed for the extraction of Z. clinopodioides essential oil was hydrodistillation using a Clevenger-type apparatus. Although most researchers selected the aerial parts of Z. clinopodioides for essential oil extraction, a few studies also investigated the essential oil composition of leaves or the entire plant.
Characteristics of Different Ziziphora clinopodioides Essential Oils
Species Name | Origin | Part Used | Extraction Method | Major Components (> 10%) | % Yield | References |
---|---|---|---|---|---|---|
Z. clinopodioides | Kermanshah, Iran | Leaves | HD | Carvacrol (65.2), thymol (19.5) | 0.65 a | (8) |
Z. clinopodioides subsp. Bungeana (Juz.) Rech. f. | Khorasan, Iran | Aerial parts | HD | Pulegone (65.2), isomenthone (11.9) | 1 | (6) |
Z. clinopodioides subsp. rigida (BOISS.) RECH. f. | Tabriz, Iran | Aerial parts | HD | Pulegone (45.8),k pipertenone (17.4), p-Menth-3-en-8-ol (12.5) | 1 | (3) |
Z. clinopodioides Lam. | Lorestan, Iran | Aerial parts | HD | Pulegone (30.1), thymol (21.3), p-Menth-3-en-8-ol (12.9) | 1.4 | (9) |
Z. clinopodioides Lam. | Khorasan Razavi, Iran | Aerial parts | HD | Pulegone (44.5), terpineol (14.5), methyl acetate (10.9) | 0.75 | (10) |
Z. clinopodioides Lam. | Ankara, Turkey | Aerial parts | HD | Pulegone (21.9), 1,8-Cineole (14.0) | 0.33 | (11) |
Z. clinopodioides | Yovon, Tajikistan | Aerial parts | HD | Pulegone (35.0 - 72.8), neomenthol (23.1), menthone (13.3) | 0.7 – 0.8 | (12) |
Z. clinopodioides Lam. | Lorestan, Iran | Aerial parts | HD | Pulegone (30.1 - 44.6), thymol (up to 21.3), p-Menth-3-en-8-ol (10.5 - 12.9), 1,8-Cineole (up to 10.4), isomenthone (up to 11.6) | 0.65 - 1.1 | (13) |
Z. clinopodioides | Erzurum-Palandoken Mountain, Turkey | Aerial parts | HD | Pulegone (31.9), 1,8-Cineole (12.2), limonene (10.5) | 0.44 | (14) |
Z. clinopodioidesssp. rigida | Hamedan, Iran | Aerial parts | HD | Pulegone (0.7 - 44.5), 1,8-Cineole (2.1 - 26), neomenthol (2.5 - 22.5) | -- | (15) |
Z. clinopodioides | Tacheng,Terks of the Yili region, China | Whole plant | HD | Pulegone (32.5 - 86.4), p-Menthanone (3.2 - 43.7) | -- | (16) |
Z. clinopodioides Lam. | Kerman, Iran | Aerial parts | HD | Pulegone (43.3), piperitenone (15.1) | 0.96 | (17) |
Z. clinopodioides | East-Azerbaijan, Iran | Aerial parts | HD | Pulegone (25.9), 1,8-Cineole (19.7) | -- | (18) |
Z. clinopodioides | Coruh Valley, Turkey | Aerial parts | HD | Pulegone (41.1 - 51.1) | -- | (19) |
Z. clinopodioides | North Khorasan, Iran | Aerial parts | HD | Pulegone (40.1), menthone (13.8), isomenthone (12.3) | 1 | (20) |
Z. clinopodioides | Kashan, Iran | Leaves | HD | Thymol (45.5) | -- | (21) |
Z. clinopodioides Lam. | Xinjiang Uyghur Autonomous, China | Aerial parts | HD | Pulegone (53.5), isomenthone (10.4) | 1.2 | (22) |
Z. clinopodioides | Mazandaran, Iran | Aerial parts | HD | 1,8-Cineole (10.4) | 0.98 | (23) |
Z. clinopodioides Lam. | North of Iran | Aerial parts | HD | Pulegone (36.4), piperitenone (19.1) | 0.9 | (24) |
Z. clinopodioides Lam. | R. Chubai-Nura, Kazakhstan | -- | HD | Pulegone (62.4) | -- | (25) |
Z. clinopodioides Lam. | Iran | Aerial parts | HD | Pulegone (49.4), piperitenone (10.7) | 2.3 - 2.5 | (26) |
Z. clinopodioides | Alborz, Iran | Aerial parts | HD | Pulegone (58.8) | 1 | (27) |
Z. clinopodioides Lam. | Ilam, Lorestan, Kermanshah, Kurdestan, Iran | Leaf, flower, stem | HD | Carvacrol (65.1 - 74.3), thymol (14.4 - 55.6), γ-Terpinene (24.4 - 24.6), p-Cymene (10.2 - 10.2) | 0.1 - 4.5 | (28) |
Z. clinopodioides Lam. | Urumq, China | Entire plant | HD | Pulegone (77.5 - 87.3), p-Menthanone (2.8 - 12.4) | 1.1 - 1.8 | (29) |
Z. clinopodioides Lam. | Charmahal va Bakhtiyari, Isfahan, Iran | Aerial parts | HD | Pulegone (17.5 - 57.8), p-Menth-3-en-8-ol (15 - 15.1), 1,8-Cineole (up to 27.4), limonene (up to 12.8) | 0.12 - 0.98 | (30) |
Z. clinopodioides Lam. | Baluchestan, Iran | Aerial parts | HD | Pulegone (61.7), cis-Caran-trans-2-ol (12.7), 1,8-Cineole (10.2) | 1.86 | (31) |
Z. clinopodioides | North Khorasan, Iran | Aerial parts | HD | Pulegone (41.5), piperitenone (18.5) | 1.1 | (32) |
Z. clinopodioides | Golestan, Iran | Aerial parts | HD | Pulegone (7.3 - 16) | 0.44 - 0.9 | (33) |
Z. clinopodioides | Erzurum, Turkey | Leaves | HD | Pulegone (60.2), menthone (13.6), menthol (10.9) | (34) | |
Z. clinopodioides | Tehran- Qazvin- Azarbaijan- Fars, Iran | Aerial parts | HD | Pulegone (23.0 - 52.0), 1,8-Cineol (up to 32.4), limonene (up to 29.0), neomenthone (up to 26.0), p-Menth-3-en-8-ol (up to 24.3), piperitenone (up to 16.8), γ-Terpinene (up to 16.1) | 0.13 - 1.44 | (35) |
Z. clinopodioides | Hamedan- Kurdestan, Iran | Aerial parts | HD | Pulegone (22.3 - 60.4), 1,8-cineol (up to 29.9), p-Menth-3-en-8-ol (up to 14.0), piperitenone (up to 10.9), neomenthol (up to 10.8), isomenthone (up to 10.3), terpinen-4-ol (up to 10.2) | 0.37 - 1 | (36) |
Z. clinopodioides Lam. | Iran | Aerial parts | Perculation (n-hexane fraction) | Pulegone (24.4), menthol (14.0) | -- | (37) |
Z. clinopodioides | Iran | -- | HD | Geraniol (20.6), carvacrol (18.2) | -- | (38) |
Z. clinopodioides | Khorasan Razavi, Iran | -- | SD | Pulegone (37), p-Piperitone (19.6) | -- | (39) |
Z. clinopodioides | Ermenek, Turkey | -- | HD | α-Terpineol (up to 33.3), camphor (10.9 - 12.4), borneol (up to 24.4), α-Pinen (10.8 - 17.6), isoborneol (up to 21.2) | 0.12 - 0.5 | (40) |
Z. clinopodioides Lam. | Kashan, Iran | Aerial parts | SDE, HD, SD, ultrasonic | Pulegone (25.9 - 35.2), piperitenone (10.1 - 27.9), menthol (11.4 - 17.5) | 0.3 - 1.3 | (41) |
Z. clinopodioides Lam. | Fars, Iran | Aerial parts | HD | Pulegone (27.4), isomenthone (10.1) | 0.15 | (42) |
Z. clinopodioides Lam. | Iran | Leaves | HD | Pulegone (51.8) | -- | (43) |
Z. clinopodioides | Kerman, Iran | -- | HD | Pulegone (31.2), menth-3-en-8-ol (23.8) | -- | (44) |
Z. clinopodioides subsp. Elbursensis; Z. clinopodioides subsp. Filicaulis | Mazandaran, Tehran, Iran | Aerial parts | HD | Pulegone (21.5 - 38.9), menthone (up to 10.4), carvacrol (up to 16.6), thymol (up to 10.1) | 0.5 - 1 | (45) |
Z. clinopodioides | Van, Turkey | Aerial parts | HD | Pulegone (29.3), menthone (21.8), 1,8-Cineole (15.3) | -- | (46) |
Z. clinopodioides subsp. bungeana (Juz.) | Khorasan, Iran | Aerial parts | HD | Pulegone (20.2 - 34.2), iso-menthone (9.1 - 18.3) | 0.23 - 0.61 | (2) |
Z. clinopodioides Lam. | Fars, Iran | Aerial parts | HD | Pulegone (26.3 - 50.9), p-Menth-3-en-8-ol (11.3 - 14.7), menthone (10 - 10.4) | 0.2 - 1.2 | (47) |
Z. clinopodioides Lam. | Iran | Aerial parts | HD | Pulegone (23.1), menthone (19.5), p-Menth-3-en-8-ol (10.4) | -- | (48) |
Z. clinopodioides | Tehran, Iran | Aerial parts | HD | Thymol (41.7) | -- | (49) |
Z. clinopodioides Lam. | North Khorasan, Iran | Aerial parts | HD | Pulegone (46.1), menthol (10.7) | (50) | |
Z. clinopodioides | Bojnurd, Iran | Aerial parts | HD | Pulegone (26.6), iso-menthone (17.5), limonene (10.5) | 1.5 | (51) |
Z. clinopodioides Lam. | Hamedan, Iran | Aerial parts | HD | Pulegone (59.3), β-caryophyllene (10.4) | -- | (52) |
Z. clinopodioides | Mazandaran, Iran | -- | HD | Pulegone (48.2), 1,8-cineol (11.2) | -- | (53) |
Z. clinopodioides | Alborz, Iran | Aerial parts | HD | Carvacrol (54.3), thymol (12.5) | 2.5 | (54) |
Z. clinopodioides | Iran | -- | -- | Pulegone (79.3) | -- | (55) |
Z. clinopodioides Var. rigida | Kerman, Iran | Aerial parts | HD | Pulegone (52.4), dihydrocarvyl acetate (14.1), 1,8-cineole (13.0) | -- | (56) |
Z. clinopodioides | Urmia, Iran | Aerial parts | HD | Thymol (54.4) | -- | (57) |
Z. clinopodioides | Kordestan, Iran | -- | HD | Thymol (34.2), pulegone (14.4), carvacrol (10.9) | 0.8 | (58) |
The compounds that comprised more than 10% of the total essential oil were listed in the table as major components. A general view apparently revealed that the essential oil of Z. clinopodioides could be considered a pulegone-rich essential oil. It is interesting to note that 45 out of 54 studies mentioned in Table 1 have identified more than 10% pulegone in Z. clinopodioides essential oil, and 37 studies reported more than 30% pulegone content. Two studies reported more than 80% pulegone content in Z. clinopodioides essential oil (16, 29). Various Biological activities have been reported for pulegone, antimicrobial, antifungal, insecticidal, anti-inflammatory, and gastrointestinal-related activity, to name a few (59). Therefore, one can reasonably predict that pulegone-rich essential oils possess outstanding biological effects.
Several studies reported relatively high amounts of aromatic monoterpenoids thymol (41.7 - 55.6%) and carvacrol (54.3 - 74.3%) in the Z. clinopodioides essential oil as the main components. These two monoterpenoids have been known for their prominent antimicrobial properties. The structures of frequently identified compounds in the essential oil of Z. clinopodioides are represented in Figure 1. Most structures have menthane type skeleton, and due to their interesting structural similarity, it has been obviously understandable that the monoterpenoids biosynthetic pathway activated in the Z. clinopodioides. Oxygenated monoterpenes are more abundant than hydrocarbon monoterpenes in the Z. clinopodioides essential oil.
Chemical structures of key volatile components in Ziziphora clinopodioides essential oil
3.2. Biological Activities
A review of the literature regarding the biological properties of Z. clinopodioides essential oil revealed that most studies focused on its antibacterial effects (3, 6, 8, 10, 14, 17, 18, 28, 32, 49, 60-65), antifungal activity (10, 22, 44, 57, 66-73), and antioxidant capacity (9, 19, 28, 56, 64, 74, 75). A few other biological effects were assessed in some studies, which will be discussed later in this review. It is important to note that studies investigating the biological activity of formulations containing Z. clinopodioides essential oil have also been reviewed in this article to the extent that they have also examined the effect of pure essential oil.
3.2.1. Antibacterial Activity
The reported antibacterial effects of Z. clinopodioides essential oil are summarized in Table 2. An overview revealed that the most frequently studied gram-positive bacterial strains include S. aureus, B. subtilis, L. monocytogenes, B. cereus, and S. epidermidis. Additionally, the most studied gram-negative bacterial strains include E. coli, K. pneumoniae, and S. typhimurium. Most researchers evaluated the antibacterial effects of Z. clinopodioides essential oil using microdilution and disk-diffusion methods. It is evident that Z. clinopodioides essential oil exhibits significant antibacterial activity against both gram-positive and gram-negative bacteria, in addition to certain antibiotic-resistant bacterial strains.
Antibacterial Activity of Different Ziziphora clinopodioides Essential Oils
Species | Target Organism | Method | Result | References |
---|---|---|---|---|
Z. clinopodioides | S. aureus, B. subtilis, B. cereus, L. monocytogenes, S. typhimurium, E. coli O157:H7 | Microdilution | MIC (μL/mL) = MBC = 0.0025, 0.0012, 0.0012, 0.0012, 0.0025, 0.0025 | (8) |
S. aureus, B. subtilis, B. cereus, L. monocytogenes, S. typhimurium, E. coli O157:H7 | Agar disk diffusion (20 μL/disk) | IZ (mm) = 30, 23, 23, 28, 22, 26 | ||
Z. clinopodioides subsp. bungeana (Juz.) Rech. f. | B. subtilis, S. epidermidis, S. aureus, E. faecalis, K. pnemoniae, E. coli | Microdilution | MIC (mg/mL) = 3.75, 3.75, 3.75 , > 15, > 15, 3.75 | (6) |
B. subtilis, S. epidermidis, S. aureus, E. faecalis, K. pnemoniae, E. coli | Disk diffusion (10 μL/disk) | IZ (mm) = 20, 22, 19, 14, 11, 20 | ||
Z. clinopodioides subsp. rigida (BOISS.) RECH. f. | B. subtilis, S. epidermidis, S. aureus, E. faecalis, K. pnemoniae, E. coli | Microdilution | MIC (mg/mL) = 3.8, 7.5, 7.5, > 15, 15, 15 | (3) |
B. subtilis, S. epidermidis, S. aureus, E. faecalis, K. pnemoniae, E. coli | Disk diffusion (15 μL/disk) | IZ (mm) = 18, 16, 15, 12, 11, 15 | ||
Z. clinopodioides Lam. | E. coli, K. pnemoniae, S. aureus, P. aeruginosa, S. typhi | Microdilution | MIC (%V/V dilution) = 0.003, 0.067, 0.033, 0.033, 0.067 | (10) |
Z. clinopodioides | (total 52 bacterial strains) B. sphaericus, B. flexus, C. ammoniagenes, E. sakazakii, X. arboricola corylina | Disk diffusion (10 μg/disk) | IZ (mm) = 27, 25, 25, 24, 24 | (14) |
(total 35 bacteria) E. faecalis, M. catarrhalis, E. hormaechei, E. acetylicum, C. ammoniagenes, B. subtilis, B. marinus, | Microdilution | MIC (μg/mL) = 7.81, 7.81, 15.60, 15.60, 15.60, 15.60, 15.60 | ||
Z. clinopodioides Lam. | S. enterica, B. cereus, E. aerogenes, S. aureus, L. monocytogenes | Disk diffusion (10 μg/disk) | IZ (mm)= 19.3, 20.3, 19, 14, 32.1 | (17) |
S. enterica, B. cereus, E. aerogenes, S. aureus, L. monocytogenes | Microdilution | MIC (μg/mL) = 0.25, 1, 0.25, 0.5, 0.125 | ||
S. enterica, E. aerogenes, S. aureus, L. monocytogenes | MBC (μg/mL) = 2, 2, 0.5, 0.125 | |||
Z. clinopodioides | Antibiotic resistant S. aureus | Disk diffusion (50, 100 μL) | IZ (mm) = 0.81, 0.18 | (18) |
Z. clinopodioides | S. aureus, B. subtilis, B. cereus,L. monocytogenes, S. typhimurium, E. coli O157:H7 | Microdilution | MIC (μL/mL) = 0.0003, 0.0003, 0.0004, 0.0003, 0.0004, 0.0004 | (63) |
Z. clinopodioides Lam. | S. aureus | Microdilution (%V/V dilution) | MIC = 0.03 - 0.04 ; MBC = 0.04 - 0.05 | (28) |
B. subtilis | MIC = 0.03 - 0.04; MBC = 0.03 - 0.05 | |||
B. cereus | MIC = 0.04 - 0.05; MBC = 0.05 | |||
L. monocytogenes | MIC = 0.03 - 0.04; MBC = 0.03 - 0.04 | |||
S. typhimurium | MIC = 0.04 - 0.05; MBC = 0.05 - 0.06 | |||
E. coli O157:H7 | MIC = 0.04 - 0.05; MBC = 0.05 | |||
S. aureus | Disk diffusion (20 μL/disk) | IZ (mm) = 28.4 - 33.3 | ||
B. subtilis | IZ (mm) = 20.2 - 28.4 | |||
B. cereus | IZ (mm) = 21.4 - 28.1 | |||
L. monocytogenes | IZ (mm) = 26.2 - 32.4 | |||
S. typhimurium | IZ (mm) = 18.3 - 23.1 | |||
E. coli O157:H7 | IZ (mm) = 23.1 - 27.4 | |||
Z. clinopodioides | S. aureus, B. cereus, K. pnemoniae, E. coli | Microdilution | MIC (μg/mL) = 4.25, 1.25, 7.25, 5.75; MBC (μg/mL) = 90, 4.50, 7.25, 5.75 | (32) |
Z. clinopodioides | L. acidophilus, B. bifidum | Lethal dose (ppm) = 1750, 1500 | (49) | |
Z. clinopodioides L. | S. aureus, S. epidermidis, S. saprophyticus, E. coli, K. pnemoniae, P. vulgaris, E. aerogenes, C. frundii, P. areuginosa | Disk diffusion (30 μL/disk) | IZ (mm) = 22, 20, 21, 21, 29, 19, 19, 20, 5 | (60) |
Z. clinopodioides Lam. | E. coli, MRSA | Microdilution | MIC (mg/mL) = 5, 10; MBC (mg/mL) = 5, 10 | (64) |
However, considering the variations in subspecies, origins, and compositions of the essential oils, it can be expected that some differences might exist in the reported antibacterial activities. Additionally, variations in antibacterial treatment methods, such as the concentration of essential oil used in the disk-diffusion method, should be taken into account when comparing the data presented in Figure 1.
Although information regarding the composition of essential oil components is not available in a few reference articles, a general review indicates that essential oils containing high amounts of carvacrol (65 - 74%), thymol (41 - 55%), and pulegone (25 - 65%) have exhibited strong antibacterial effects. The carvacrol-rich (65.2%) Z. clinopodioides essential oil demonstrated prominent antibacterial activity against both gram-positive and gram-negative bacteria (8, 63). Considerable antibacterial effects were reported for Z. clinopodioides essential oil, containing 44.5% and 43.3% pulegone content, respectively (10, 17). Moreover, significant antibacterial activities were observed in carvacrol- and thymol-rich Z. clinopodioides essential oils (28). It has been proven that the antibacterial action of carvacrol and thymol is based on targeting the cytoplasmic membrane, resulting in bacterial lysis and the leakage of intracellular contents (61, 62, 65). Considering that the antibacterial properties of the above-mentioned monoterpenoids have been widely studied and proven, it is not surprising that essential oils containing high amounts of these compounds exhibit strong antibacterial activity.
3.2.2. Antifungal Activity
The reported antifungal effects of Z. clinopodioides essential oil have been summarized in Table 3. A general overview revealed that the most studied fungi include several species of Aspergillus and Trichophyton. Most researchers assessed the antifungal activity of Z. clinopodioides essential oil using broth macrodilution, broth microdilution, and mycelium inhibition methods. Predictable variations in the antifungal activity results of the represented studies have been observed due to differences in subspecies, origins, and essential oil compositions. Nevertheless, it is apparent that Z. clinopodioides essential oil exhibits significant antifungal activity. An evaluation of the composition of essential oils possessing antifungal activity listed in Table 2 revealed some extent of similarity to those with antibacterial effects. Distinguished antifungal effects have been reported for Z. clinopodioides essential oil, containing 54.4% Thymol content (57). In addition, notable antifungal activities were observed for Z. clinopodioides essential oils containing 53.5%, 44.5%, 37%, and 31.2% pulegone content (10, 22, 44, 72). Therefore, although not mentioned in these studies, the antifungal effects of carvacrol have been proven (71). Moreover, as supported by various published research based on the antifungal mechanism of action of thymol and pulegone (66-68), one would reasonably predict that the presence of high amounts of these monoterpenoids in Z. clinopodioides essential oil could also lead to strong antifungal effects.
Antifungal Activity of Different Ziziphora clinopodioids Essential Oils
Species | Target Organism | Method | Result | References |
---|---|---|---|---|
Z. clinopodioides Lam. | A. niger, T. rubrum, T. reesei, M. gypseum | Mycelium inhibition | Inhibition conc. (μL/mL) = 1, 0.5, 0.5, 0.5 | (10) |
Z. clinopodioides Lam. | S. sclerotiorum | Mycelium inhibition | Contact condition: Inhibition conc. (μL/mL) = 1.25; vapor phase condition: Inhibition conc. (μL/mL) = 0.15 | (22) |
Germination inhibition | Contact condition: Inhibition conc. (μL/mL) = 1.00; vapor phase condition: Inhibition conc. (μL/mL) = 0.15 | |||
Z. clinopodioides | A. flavus, A. parasiticus | Broth macrodilution | MIC (μg/mL) = 48.82, 48.82; MFC (μg/mL) = 781.25, 390.625 | (73) |
Z. clinopodioides | A. fumigatus, A. flavus | Broth macrodilution | MIC 90 (mg/mL) = 0.5, 0.25; MFC (mg/mL) = 1, 0.5 | (70) |
Broth microdilution | MIC 90 (mg/mL) = 1.5, 1.5; MFC (mg/mL) = 3, 3 | |||
Z. clinopodioides L. | B. cinerea | Mycelium inhibition | Inhibition conc. (mL/L) = 1.00, 2.00 | (69) |
Z. clinopodioides | A. flavus, A. parasiticus | Mycelium inhibition | Inhibition conc. (μL) = 9.00 | (44) |
Z. clinopodioides | A. parasiticus, A. fumigatus | Broth macrodilution | MIC 90 (mg/mL) = 0.37, 0.43; MFC (mg/mL) = 1.2, 1.37 | (72) |
Broth microdilution | MIC 90 (mg/mL) = 2.1, 1.5; MFC (mg/mL) = 5.5, 3.2 | |||
Z. clinopodioides | M. canis, M. gypseum, T. mentagrophytes, T. rubrum, T. schoenleinii | Broth microdilution | MIC (μL/mL) = 0.01, 0.01, 0.03, 0.06, 0.01; MFC (μL/mL) = 0.03, 0.01, 0.03, 0.06, 0.01 | (57) |
Mycelium inhibition | (150 ppm) inhibition percentage = 59.1, 48.8, 28.2, 60.9, 100 |
3.2.3. Antioxidant Capacity
The reported antioxidant capacity of Z. clinopodioides essential oil has been summarized in Table 4. Most researchers assessed the antioxidant capacity of Z. clinopodioides essential oil using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and β-carotene-linoleic acid bleaching assay. Examining the antioxidant results represented in Table 3 reveals that the total essential oil compounds should be considered in addition to the major components. As mentioned before, oxygenated monoterpenes make up the majority of Z. clinopodioides essential oil compounds. It has been proven that the presence of oxygenated monoterpenes and monoterpen hydrocarbons in the composition of essential oils leads to antioxidant activity (74, 75). Therefore, it is not unexpected that various Z. clinopodioides essential oils show different antioxidant activities due to the large variation in the percentage composition of the components. Therefore, the inhibition rate in the DPPH radical scavenging assay varies between 34 μg/mL and 5.12 mg/mL. However, due to the presence of oxygenated monoterpenes that comprise the majority of the essential oil components, Z. clinopodioides essential oil definitely possesses notable antioxidant activity.
Antioxidant Capacity of Different Ziziphora clinopodioids Essential Oils
Species | Method | Result | References |
---|---|---|---|
Z. clinopodioides Lam. | DPPH a | IC50b = 55.3 μg/mL | (9) |
β-catotene-linoleic acid | 61.6% inhibition | ||
Z. clinopodioides | DPPH | IC50 = 3.6 - 4.2 mg/mL | (19) |
Z. clinopodioides Lam. | DPPH | IC50 (mg/mL) = 0.30 - 0.56 | (28) |
Ferric reducing power | EC50 (mg/mL) = 0.40 - 0.91 | ||
β-catotene-linoleic acid | EC50 (mg/mL) = 0.09 - 0.23 | ||
Z. clinopodioides var. rigida | DPPH | IC50 = 33.94 - 61.48 μg/mL | (56) |
β-catotene-linoleic acid | 108.69 % inhibition | ||
Z. clinopodioides Lam. | DPPH | IC50 = 5.12 mg/mL | (64) |
ABTS c | IC50 = 0.79 mg/mL | ||
FRAP d | 66.9 μM Fe(II)/mg |
3.2.4. Insecticidal Activity
The potential of Z. clinopodioides essential oil as an insecticidal agent has been discussed in a few studies. The lethal concentration 50 (LC50) value of pulegone-rich Z. clinopodioides Lam. essential oil was reported to be equivalent to 68.3 μL L-1 of air against Tribolium castaneum (43). In addition, the LC50 value of Z. clinopodioides essential oil against Ephestia kuehniella was reported as 47.95 μL L-1 of air and 0.94 mL.m-2 for fumigant and contact bioassay, respectively (76). The insecticidal activity of pulegone-rich Z. clinopodioides essential oil was assessed against Ephestia kuehniella Zeller, and the LC50 values of 54.61 and 1.39 μL L-1 of air were obtained for larva and adult insects (26). In another study, the pesticidal activity of Z. clinopodioides essential oil was assessed against Plodia interpunctella, and the LC50 values of 10.12 and 25.77 μL L-1 of air were obtained for larva and adult pests (77). The LC50 value of Z. clinopodioides Lam. essential oil against Anopheles stephensi and Culex pipiens was reported as 14.9 and 16.5 μg/mL, respectively (24). Therefore, Z. clinopodioides essential oil could be considered a natural agent possessing potential insecticidal properties.
3.2.5. Other Biological Properties
The antinociceptive activity of carvacrol-rich (65.2%) Z. clinopodioides essential oil was evaluated, and the obtained results demonstrated that this essential oil possesses antinociceptive effects, with the mechanism of action potentially involving an opioidergic pathway (78). In another study, the effect of using Z. clinopodioides essential oil and nisin as preservatives was assessed in relation to the sensory properties of fish burgers (79). The results revealed that adding Z. clinopodioides essential oil improved the odor, taste, and overall acceptability of the fish burgers.
Furthermore, the anti-inflammatory activity of Z. clinopodioides essential oil was assessed, and the half maximal inhibitory concentration (IC50) values for soybean 5-lipoxygenase (5-LOX) inhibition were calculated as 33.12 μg/mL, confirming the moderate anti-inflammatory activity of the essential oil (64).
4. Conclusions
Ziziphora clinopodioides is a well-known aromatic and medicinal herb of the genus Ziziphora. Extensive research has been undertaken on the chemical composition and biological properties of its essential oil. A comprehensive review of all published literature on the essential oil composition of this species reveals that oxygenated monoterpenoids, such as pulegone and other menthane-type structures, in addition to aromatic monoterpenoids, such as carvacrol and thymol, comprise the majority of Z. clinopodioides essential oil components. Due to the presence of high amounts of bioactive monoterpenoids in the essential oil, it has shown outstanding antibacterial properties against both gram-positive and gram-negative bacteria and several drug-resistant bacterial strains. Similarly, it seems that the bioactive monoterpenoids are responsible for the significant antifungal activity of Z. clinopodioides essential oil. The antioxidant capacity and insecticidal activity of Z. clinopodioides essential oil have been proven in several studies. Therefore, Z. clinopodioides essential oil could be considered a natural bioactive product possessing various biological properties. However, due to the lack of studies concerning its safety, it is suggested that further research is needed for future industrial usage of Z. clinopodioides essential oil.
References
-
1.
Shahbazi Y. Ziziphora clinopodioides Essential Oil and Nisin as Potential Antimicrobial Agents against Escherichia coli O157:H7 in Doogh (Iranian Yoghurt Drink). J Pathog. 2015;2015:176024. [PubMed ID: 26783466]. [PubMed Central ID: PMC4691478]. https://doi.org/10.1155/2015/176024.
-
2.
Asgharipour MR, Akbari Abjahan A, Dahmarde M. Variability in Ziziphora clinopodioides subsp. bungeana (Juz.) Based on Morphological Traits and Essential Oils Profile. Not Bot Horti Agrobot Cluj Napoca. 2016;44(1). https://doi.org/10.15835/nbha.44.1.10118.
-
3.
Salehi P, Sonboli A, Eftekhar F, Nejad-Ebrahimi S, Yousefzadi M. Essential oil composition, antibacterial and antioxidant activity of the oil and various extracts of Ziziphora clinopodioides subsp. rigida (BOISS.) RECH. f. from Iran. Biol Pharm Bull. 2005;28(10):1892-6. [PubMed ID: 16204941]. https://doi.org/10.1248/bpb.28.1892.
-
4.
Ahmadi A, Gandomi H, Derakhshandeh A, Misaghi A, Noori N. Phytochemical composition and in vitro safety evaluation of Ziziphora clinopodioides Lam. ethanolic extract: Cytotoxicity, genotoxicity and mutagenicity assessment. J Ethnopharmacol. 2021;266:113428. [PubMed ID: 33011368]. https://doi.org/10.1016/j.jep.2020.113428.
-
5.
Mohammadhosseini M. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind Crops Prod. 2017;105:164-92. https://doi.org/10.1016/j.indcrop.2017.05.009.
-
6.
Sonboli A, Mirjalili MH, Hadian J, Ebrahimi SN, Yousefzadi M. Antibacterial activity and composition of the essential oil of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. from Iran. Z Naturforsch C J Biosci. 2006;61(9-10):677-80. [PubMed ID: 17137113]. https://doi.org/10.1515/znc-2006-9-1011.
-
7.
Sharma S, Barkauskaite S, Jaiswal AK, Jaiswal S. Essential oils as additives in active food packaging. Food Chem. 2021;343:128403. [PubMed ID: 33268167]. https://doi.org/10.1016/j.foodchem.2020.128403.
-
8.
Shahbazi Y. Chemical Composition and in Vitro Antibacterial Effect of Ziziphora clinopodioides Essential Oil. Pharmaceutical Sciences. 2015;21(2):51-6. https://doi.org/10.15171/ps.2015.17.
-
9.
Amiri H. [Composition and antioxidant activity of the essential oil and methanolic extract of Ziziphora clinopodioides Lam in preflowering stage]. J Kerman Univ Med Sci. 2009;15(1):79-86. Persian.
-
10.
Behravan J, Ramezani M, Hassanzadeh MK, Eskandari M, Kasaian J, Sabeti Z. Composition, Antimycotic and Antibacterial Activity ofZiziphora clinopodioidesLam. Essential Oil from Iran. J Essent Oil Res. 2007;10(4):339-45. https://doi.org/10.1080/0972060x.2007.10643565.
-
11.
Baser KHC, Sezik E, Tümen G. Composition of the Essential Oil ofZiziphora clinopodioidesLam. J Essent Oil Res. 1991;3(4):237-9. https://doi.org/10.1080/10412905.1991.9697934.
-
12.
Sharopov FS, Setzer WN. Chemical Diversity of Ziziphora Clinopodioides: Composition of the Essential oil of Z. clinopodioides from Tajikistan. Nat Prod Commun. 2011;6(5):1934578X1100600. https://doi.org/10.1177/1934578x1100600524.
-
13.
Amiri H. Influence of growth phase on the essential oil composition of Ziziphora clinopodioides Lam. Nat Prod Res. 2009;23(7):601-6. [PubMed ID: 19401912]. https://doi.org/10.1080/14786410802113995.
-
14.
Ozturk S, Ercisli S. Antibacterial activity and chemical constitutions of Ziziphora clinopodioides. Food Control. 2007;18(5):535-40. https://doi.org/10.1016/j.foodcont.2006.01.002.
-
15.
Sonboli A, Atri M, Shafiei S. Intraspecific variability of the essential oil of Ziziphora clinopodioides ssp. rigida from Iran. Chem Biodivers. 2010;7(7):1784-9. [PubMed ID: 20658666]. https://doi.org/10.1002/cbdv.200900336.
-
16.
Zhou X, Yu Q, Gong H, Tian S. GC-MS analysis of Ziziphora clinopodioides essential oil from North Xinjiang, China. Nat Prod Commun. 2012;7(1):81-2. [PubMed ID: 22428253].
-
17.
Soltani Nejad S. Chemical composition and in vitro antibacterial activity of Ziziphora clinopodioides Lam. essential oil against some pathogenic bacteria. Afr J Microbiol Res. 2012;6(7). https://doi.org/10.5897/ajmr11.1362.
-
18.
Jafari-Sales A, Shahniani A, Fathi R, Malekzadeh P, Mobaiyen H, Rasi Bonab F. Evaluation of Antibacterial Activity of Essential Oil of Ziziphora clinopodioides and Achillea wilhelmsii on Antibiotic-resistant Strains of Staphylococcus aureus. Internal Medicine and Medical Investigation Journal. 2017;2(2):49. https://doi.org/10.24200/imminv.v2i2.58.
-
19.
Alp S, Ercisli S, Dogan H, Temim E, Leto A, Zia-Ul-Haq M, et al. Chemical composition and antioxidant activity Ziziphora clinopodioides ecotypes from Turkey. Rom Biotechnol Lett. 2016;21(2):11298-303.
-
20.
Shahinfar R, Khanzadi S, Hashami M, Azizzadeh M, Bostan A. The effect of Ziziphora clinopodioides essential oil and nisin on chemical and microbial characteristics of fish burger during refrigerated storage. Iran J Chem Chem Eng. 2017;36(5):65-75.
-
21.
Shakour N, Khoshkhoo Z, Akhondzadeh Basti A, Khanjari A, Mahasti Shotorbani P. Investigating the properties of PLA-nanochitosan composite films containing Ziziphora Clinopodioides essential oil and their impacts on oxidative spoilage of Oncorhynchus mykiss fillets. Food Sci Nutr. 2021;9(3):1299-311. [PubMed ID: 33747446]. [PubMed Central ID: PMC7958545]. https://doi.org/10.1002/fsn3.2053.
-
22.
Ma B, Ban X, He J, Huang B, Zeng H, Tian J, et al. Antifungal activity of Ziziphora clinopodioides Lam. essential oil against Sclerotinia sclerotiorum on rapeseed plants (Brassica campestris L.). Crop Protection. 2016;89:289-95. https://doi.org/10.1016/j.cropro.2016.07.003.
-
23.
Morteza-Semnani K, Saeedi M, Eslami G. Essential oil composition of Ziziphora clinopodioides Lam. from Iran. J Essent Oil-Bear Plants. 2005;8(2):208-12. https://doi.org/10.1080/0972060X.2005.10643447.
-
24.
Mohammadreza V. Essential oil composition and biological activity of Ziziphora clinopodioides Lam. from Iran. Am -Eurasian J Sustain Agric. 2008;2(1):69-71.
-
25.
Belyaev NF, Demeubaeva AM. Chromatographic study of the composition of the essential oil ofZiziphora clinopodioides, a vicarious form ofOriganum vulgare. Chem Nat Compd. 1999;35(1):52-4. https://doi.org/10.1007/bf02238209.
-
26.
Kheirkhah M, Ghasemi V, Yazdi AK, Rahban S. Chemical composition and insecticidal activity of essential oil from Ziziphora clinopodioides Lam. used against the Mediterranean flour moth, Ephestia kuehniella Zeller. J Plant Prot Res. 2015;55(3):260-5. https://doi.org/10.1515/jppr-2015-0037.
-
27.
Khanzadi S, Azizian A, Hashemi M, Azizzadeh M. Chemical Composition and Antibacterial Activity of the Emulsion and Nano-emulsion of Ziziphora clinopodioides Essential Oil against Escherichia coli O157:H7. J Hum Environ Health Promot. 2019;5(2):94-7. https://doi.org/10.29252/jhehp.5.2.8.
-
28.
Shahbazi Y. Chemical compositions, antioxidant and antimicrobial properties of Ziziphora clinopodioides Lam. essential oils collected from different parts of Iran. J Food Sci Technol. 2017;54(11):3491-503. [PubMed ID: 29051644]. [PubMed Central ID: PMC5629158]. https://doi.org/10.1007/s13197-017-2806-2.
-
29.
Ding W, Yang T, Liu F, Tian S. Effect of different growth stages of Ziziphora clinopodioides Lam. on its chemical composition. Pharmacogn Mag. 2014;10(Suppl 1):S1-5. [PubMed ID: 24914287]. [PubMed Central ID: PMC4047583]. https://doi.org/10.4103/0973-1296.127329.
-
30.
Khodaverdi-Samani H, Pirbalouti AG, Shirmardi H-A, Malekpoor F. Chemical composition of essential oils of Ziziphora clinopodioides Lam.(endemic Iranian herb) collected from different natural habitats. Indian J Tradit Knowl. 2015;1(1):57-62.
-
31.
Sardashti AR, Valizadeh J, Adhami Y. Chemical composition of the essential oil from Ziziphora clinopodioids Lam. from Iran by means of gas chromatography-mass spectrometry (GC-MS). J Hortic For. 2012;4(10):169-71.
-
32.
Masrournia M, Shams A. Elemental Determination and Essential Oil Composition of Ziziphora clinopodioides and Consideration of its Antibacterial Effects. Asian Journal of Chemistry. 2013;25(12):6553-6. https://doi.org/10.14233/ajchem.2013.14358.
-
33.
Ebrahimi P, Mirarab-Razi A, Biabani A. Comparative evaluation of the essential oil terpenoids in the stem and leaf of Ziziphora clinopodioides in the regions of Almeh and Sojough of Golestan province, Iran. Acta Periodica Technologica. 2012;(43):283-91. https://doi.org/10.2298/apt1243283e.
-
34.
Akgül A, De Pooter HL, De Buyck LF. The Essential Oils of Calamintha nepetasub sp. glandulosa and Ziziphora clinopodioides from Turkey. J Essent Oil Res. 1991;3(1):7-10. https://doi.org/10.1080/10412905.1991.9697899.
-
35.
Modiri E, Sefidkon F, Jamzad Z, Tavasoli A. [Extraction and identification of essential oil composition of different subspecies of Ziziphora clinopodioides Lam. from different habitats of Iran]. Iranian Journal of Medicinal and Aromatic Plants. 2013;29(3). Persian.
-
36.
Dehghan Z, Sefidkon F, Khaniki GB, Kalvandi R. [Effects of some ecological factors on essential oil content and composition of Ziziphora clinopodioides Lam. subsp. rigida (Boiss.)]. Iranian Journal of Medicinal and Aromatic Plants. 2010;26(1):49-63. Persian.
-
37.
Yousefbeyk F, Tabaside J, Ostad SN, Salehi Sourmaghi MH, Amin GR. Investigation of chemical composition and cytotoxic activity of aerial parts of Ziziphora clinopodioides Lam. Res J Pharmacogn. 2016;3(2):47-51.
-
38.
Hasan S, Khanjari A, Koohi MK, Nasrabadi HG, Shavisi N. Study on the effect of chitosan coating incorporated with Ziziphora Clinopodioides essential oil on the some microbial and sensory properties of chicken fillet at refrigerated temperature. J Vet Res. 2019;74(3):370-8.
-
39.
Khosravi AR, Shokri H, Minooeianhaghighi M. Inhibition of aflatoxin production and growth of Aspergillus parasiticus by Cuminum cyminum, Ziziphora clinopodioides, and Nigella sativa essential oils. Foodborne Pathog Dis. 2011;8(12):1275-80. [PubMed ID: 21861703]. https://doi.org/10.1089/fpd.2011.0929.
-
40.
Maral H, Taghikhani H, Alpaslan KAYA, KIRICI S. The effect of different levels of altitutes on composition and content of essential oils of Ziziphora clinopodioides in southern of Turkey. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi. 2015;1(1):1-6.
-
41.
Batooli H, Akhbari M, Hosseinizadeh SMJ. [Effect of different distillation methods on quantity and quality of essential oil of two Ziziphora L. species]. J Med Herb. 2012;3(3):135-46. Persian.
-
42.
Ghanbarian G, Jafari E, Bahmanzadegan A. Essential Oil Composition of Aerial Parts of Ziziphora clinopodioides Lam. from Western of Shiraz, Iran. Anal Chem Lett. 2017;7(3):383-8. https://doi.org/10.1080/22297928.2017.1347520.
-
43.
Hosseinpour Jajarm F, Moravvej G, Modarres Awal M, Golmohammadzadeh S. Insecticidal activity of solid lipid nanoparticle loaded by Ziziphora clinopodioides Lam. against Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). Int J Pest Manag. 2020;67(2):147-54. https://doi.org/10.1080/09670874.2020.1713420.
-
44.
Khorasany S, Azizi MH, Barzegar M, Hamidi Esfahani Z. A study on the Chemical Composition and Antifungal Activity of Essential Oil from Thymus caramanicus, Thymus daenensis and Ziziphora clinopodiaides. Nutr Food Sci Res. 2016;3(2):35-42. https://doi.org/10.18869/acadpub.nfsr.3.2.35.
-
45.
Nickavar B, Tavakoli F. Comparative Analysis of Volatile Constituents from TwoZiziphora clinopodioidesSubspecies(Z. clinopodioidessubsp.elbursensisandZ. clinopodioidessubsp.filicaulis). J Essent Oil-Bear Plants. 2016;19(8):2072-6. https://doi.org/10.1080/0972060x.2016.1249416.
-
46.
Okut N, Selcuk N, Yagmur M, Yildirim B. Chemical diversity of essential oil from leaves of Ziziphora clinopodioides growing in Van, Turkey. Fresenius Environ Bull. 2018;27(5):2785-90.
-
47.
Razmjoue D, Zarei Z. The review of ecological features effects (soil and height) on the essential oil chemical compounds of Ziziphora clinopodioides Lam. Medicinal plant in Fars Province, Iran. J Biodivers Environ Sci. 2015;6(6):391-406.
-
48.
Talebi E, Rowghani Haghighi Fard E, Navabi M, Eatemadi M. Evaluating the Effect of Two Types of Thyme Essential Oils (Zataria Multiflora & Ziziphora Clinopodioides Lam) on Some Productive Traits and Blood Parameters in Broilers. Poult Sci J. 2021;9(1):107-19.
-
49.
Alighazi N, Noori N, Gandomi H, Basti AA. Effect of Ziziphora clinopodioides Essential Oil Stress on Viability of Lactobacillus acidophilus and Bifidobacterium bifidum Microencapsulated with Alginate-Chitosan and Physicochemical and Sensory Properties of Probiotic Yoghurt. Iran J Vet Med. 2021;15(2).
-
50.
Mazandarani M, Ghaviandam BA. Ecological requirenments, essential oil composition, total phenol and flavonoid content, antioxidant activity and ethnobotanical survey of Ziziphora clinopodioides Lam. in north Khorasan Razavi province. J Medicinal Plants By- Products. 2015;2:193-9.
-
51.
Ghasemifar Z, Arianfar A, Mohammadi A. The Effect of Storage Conditions on the Essential Oil of Ziziphora clinopodiodes. J Essent Oil-Bear Plants. 2020;23(3):616-21. https://doi.org/10.1080/0972060x.2020.1756424.
-
52.
Dehghan Z, Emami SM, Sefidkon F. [Chemical composition of the essential oils Ziziphora clinopodioides collected from Tuyserkan (Hamadan), Iran]. J Med Herb. 2014;5(3 Special issue):165-7. Persian.
-
53.
Aghababaei M, Kazemeini HR, Shahavi MH. Investigating Chemical Composition of Zataria multiflora Boiss and Ziziphora clinopodioides Essential Oils in Chitosan Nanoemulsion Coating on Growth of Aeromonas Hydrophila Inoculated in Salmon Fillets. Iran J Nutr Sci Food Technol. 2021;16(2):99-109. https://doi.org/10.52547/nsft.16.2.99.
-
54.
Sharifan A, Beikmohammadi L. Antimicrobial efficiency of Iranian Ziziphora clinopodiodes essential oil on preservation of hamburger. J Med Microbiol Infect Dis. 2014;2(4):138-42.
-
55.
Edalati Nacab M, Naserian AA, Vakili SA, Tahmasbi AM. Effects of Using Mentha pulegium and Ziziphora clinopodioides Essential Oils as Additive on in vitro study. Biosci Biotechnol Res Asia. 2018;15.
-
56.
Amiri H, Beyraminia L, Hemmati Hassan Gavyar P. Chemical composition and antioxidant activity of essential oil and methanol extract of aerial parts of Ziziphora clinopodioides Var. rigida. J Kerman Univ Med Sci. 2017;24(4):329-37.
-
57.
Mahboubi M, Tabar RH, Mahdizadeh S. Chemical composition and antifungal activities of Ziziphora tenuir and Z. clinopodioides essential oils against dermatophytes. Herba Polonica. 2018;64(2):37-45. https://doi.org/10.2478/hepo-2018-0011.
-
58.
Rajabian M, Bonyadian M, Abbasvali M, Khanjari A. Effects of potato starch edible coating containing ziziphora clinopodioides and thymus daenensis essential oils on chemical organoleptic properties of chicken breast. J Vet Res. 2019;74(4):450-63.
-
59.
Baser KHC, Kirimer N, Tümen G. Pulegone-Rich Essential Oils of Turkey. J Essent Oil Res. 1998;10(1):1-8. https://doi.org/10.1080/10412905.1998.9700830.
-
60.
Anzabi Y. In Vitro Comparison of Antibacterial Effects of Ziziphora clinopodioides L. and Some Standard Antibiotics on Bacteria Isolated From Women's Urogenital Tract Infections. Int J Women's Health Reprod Sci. 2016;4(1):38-41. https://doi.org/10.15296/ijwhr.2016.09.
-
61.
Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr. 2020;60(18):3042-53. [PubMed ID: 31617738]. https://doi.org/10.1080/10408398.2019.1675585.
-
62.
Marinelli L, Di Stefano A, Cacciatore I. Carvacrol and its derivatives as antibacterial agents. Phytochemistry Reviews. 2018;17(4):903-21. https://doi.org/10.1007/s11101-018-9569-x.
-
63.
Shahbazi Y, Shavisi N. Interactions of Ziziphora clinopodioides and Mentha spicata essential oils with chitosan and ciprofloxacin against common food-related pathogens. LWT - Food Science and Technology. 2016;71:364-9. https://doi.org/10.1016/j.lwt.2016.04.011.
-
64.
Sharopov F, Braun MS, Gulmurodov I, Khalifaev D, Isupov S, Wink M. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan. Foods. 2015;4(4):645-53. [PubMed ID: 28231227]. [PubMed Central ID: PMC5224554]. https://doi.org/10.3390/foods4040645.
-
65.
Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008;47(3):174-9. [PubMed ID: 19552781]. https://doi.org/10.1111/j.1472-765X.2008.02407.x.
-
66.
Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med. 2014;24(2):e51-6. [PubMed ID: 24582134]. https://doi.org/10.1016/j.mycmed.2014.01.063.
-
67.
Amalich S, Zerkani H, Cherrat A, Dédianhoua N, Soro K, Bourakhouadar M, et al. Study on Mentha pulegium L. from M’rirt (Morocco): Antibacterial and antifungal activities of a pulegone-rich essential oil. J Chem Pharm Res. 2016;8:363-70.
-
68.
Chavan PS, Tupe SG. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control. 2014;46:115-20. https://doi.org/10.1016/j.foodcont.2014.05.007.
-
69.
Kahramanoğlu İ, Panfilova O, Kesimci TG, Bozhüyük AU, Gürbüz R, Alptekin H. Control of Postharvest Gray Mold at Strawberry Fruits Caused by Botrytis cinerea and Improving Fruit Storability through Origanum onites L. and Ziziphora clinopodioides L. Volatile Essential Oils. Agronomy. 2022;12(2):389. https://doi.org/10.3390/agronomy12020389.
-
70.
Khosravi AR, Minooeianhaghighi MH, Shokri H, Emami SA, S MA, Asili J. The potential inhibitory effect of cuminum cyminum, ziziphora clinopodioides and nigella sativa essential oils on the growth of Aspergillus fumigatus and Aspergillus. Braz J Microbiol. 2011;42(1):216-24. [PubMed ID: 24031624]. [PubMed Central ID: PMC3768938]. https://doi.org/10.1590/S1517-838220110001000027.
-
71.
Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol. 2008;99(18):8788-95. [PubMed ID: 18513954]. https://doi.org/10.1016/j.biortech.2008.04.048.
-
72.
Minooeian Haghighi MH, Khosravi AR. Inhibition and Destruction Effects of Cuminum Cyminum, Ziziphora Clinopodioides and Nigella Sativa Essences on Aspergillus Cells. J Babol Univ Med Sci. 2013;15(6):25-35. eng. https://doi.org/10.18869/acadpub.jbums.15.6.25.
-
73.
Moghadam HD, Sani AM, Sangatash MM. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol Ind Health. 2016;32(3):493-9. [PubMed ID: 24193054]. https://doi.org/10.1177/0748233713503375.
-
74.
Ahmadi F, Sadeghi S, Modarresi M, Abiri R, Mikaeli A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem Toxicol. 2010;48(5):1137-44. [PubMed ID: 20132856]. https://doi.org/10.1016/j.fct.2010.01.028.
-
75.
Cao L, Si JY, Liu Y, Sun H, Jin W, Li Z, et al. Essential oil composition, antimicrobial and antioxidant properties of Mosla chinensis Maxim. Food Chemistry. 2009;115(3):801-5. https://doi.org/10.1016/j.foodchem.2008.12.064.
-
76.
Hossein Pour Jajarm F, Moravvej G, Modarres Awal M, Golmohammadzadeh S. Application of a nanoformulation based on essential oil against Ephestia kuehniella larvae: Characterization and bioactivity. J Crop Prot. 2021;10(4):745-58.
-
77.
Sokuti Y, Ghasemi V. Acute and chronic toxicity of Ziziphora clinopodioides and Ferula gummosa essential oils against Plodia interpunctella (Lepidoptera: Pyralidae). J Entomol Soc Iran. 2018;38(2):187-203. en. https://doi.org/10.22117/jesi.2018.120696.1195.
-
78.
Mohammadifard F, Alimohammadi S. Chemical Composition and Role of Opioidergic System in Antinociceptive Effect of Ziziphora Clinopodioides Essential Oil. Basic Clin Neurosci. 2018;9(5):357-66. [PubMed ID: 30719250]. [PubMed Central ID: PMC6360493]. https://doi.org/10.32598/bcn.9.5.357.
-
79.
Shahinfar R, Khanzadi S, Hashami M, Azizzadeh M, Bostan A. Sensory analysis of fish burgers containing Ziziphora clinopodioides essential oil and nisin: The effect of natural preservatives and microencapsulation. Iran J Chem Chem Eng. 2017;36(5):77-88.