Logo
Jundishapur J Nat Pharm Prod

Image Credit:Jundishapur J Nat Pharm Prod

Plant-Origin Coumarin-Hemiterpene Ethers and Their Chemotaxonomic Significance

Author(s):
Saba Rahimi BahooshSaba Rahimi Bahoosh1, Mahdi MojarrabMahdi MojarrabMahdi Mojarrab ORCID2, 3,*
1Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Pharmaceutical Sciences Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
3Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran

Jundishapur Journal of Natural Pharmaceutical Products:Vol. 20, issue 3; e162501
Published online:Aug 17, 2025
Article type:Review Article
Received:May 06, 2025
Accepted:Jun 23, 2025
How to Cite:Rahimi Bahoosh S, Mojarrab M. Plant-Origin Coumarin-Hemiterpene Ethers and Their Chemotaxonomic Significance.Jundishapur J Nat Pharm Prod.2025;20(3):e162501.https://doi.org/10.5812/jjnpp-162501.

Abstract

Context:

A particular class of coumarins, known as coumarin-hemiterpene ethers (CHEs), consists of a coumarin nucleus and a prenyloxy portion. No detailed report on natural coumarin-hemiterpene ethers (NCHEs) and their plant sources is available.

Evidence Acquisition:

Electronic databases, including PubMed, EMBASE, Scopus, Google Scholar, and ScienceDirect, were searched for isolation reports of NCHEs. All relevant papers published up to February 2025 were collected.

Results:

The NCHEs have been found in 15 plant families. The Rutaceae, Asteraceae, and Apiaceae families are the richest sources of NCHEs. 7-isopentenyloxycoumarin is the most common NCHE. The non-glycosylated forms are the predominant types of plant-derived CHEs. The NCHEs possess chemotaxonomic significance, as many have been identified exclusively in a single family. The highest number of exclusive NCHEs was found in the Rutaceae family, while the Asteraceae family shows the highest diversity of unique substitution patterns.

Conclusions:

The NCHEs are specific coumarins that exhibit considerable chemotaxonomic potential.

1. Context

The prenyloxy coumarins are a class of secondary metabolites with promising pharmacological activities. These compounds comprise structures in which a prenyl side chain is linked to the coumarin scaffold through an ethereal bond. In a type of prenyloxy coumarins, the prenyl side chain is an isopentenyl moiety (1) or, in other words, a hemiterpene moiety (C5) (2). Although a hemiterpene is an isoprene group, several five-carbon compounds containing an isopentane skeleton, which can be saturated, unsaturated, repeatedly oxygenated, or methoxylated, are known as hemiterpenes (3). Szabo et al. first used the term “Coumarin-Hemiterpene Ethers” in 1985 for coumarins bearing a hemiterpene moiety by a C-O linkage (4). To date, numerous natural coumarin-hemiterpene ethers (NCHEs) have been reported with various biological activities such as antioxidant (5, 6), anti-inflammatory (7-9), antiviral (10, 11), antifungal (12, 13), cytotoxic, apoptotic (14), and antimutagenic activities (15). There are also reports on the synthesis and biological evaluation of coumarin-hemiterpene ethers (CHEs) that have not been found in nature (16). Although most NCHEs are aglycones, a limited number of glycosylated NCHEs have also been documented (17, 18). However, a comprehensive report on NCHEs and their plant sources has not been available. Additionally, the significance of NCHEs as chemotaxonomic markers has not been thoroughly investigated or discussed.

For the first time, in this review, we have categorized NCHEs based on their structural features and plant sources and have introduced their chemotaxonomic potential.

2. Evidence Acquisition

Electronic databases, including PubMed, EMBASE, Scopus, Google Scholar, and ScienceDirect, were searched for isolation reports of NCHEs. All relevant papers published up to February 2025 were collected. Relevant articles written in English or those that had at least an English abstract were included in this study. Studies involving synthetic CHEs and CHEs isolated from non-plant sources were excluded from the current study. The search terms were as follows: Hemiterpene, isopentenyloxy, prenyloxy, oxy prenyl, dimethyl allyloxy, methyl butoxy, methyl butyloxy, isoprene, and coumarin.

3. Results

3.1. Coumarin-Hemiterpene Ethers and Their Plant Sources

As previously mentioned, only a few glycosylated NCHEs, such as 4'-O-(β-D-glucopyranosyl) desoxylacarol and 5-O-(β-D-glucopyranosyl) lacarol from the aerial parts of Artemisia armeniaca (Asteraceae) (17), and 6-O-[β-D-apiofuranosyl-(1-6)-β-D-glucopyranosyl]-prenyletin from the roots of Prangos uloptera (Apiaceae) (18), have been reported to date. The structures of these glycosylated NCHEs are illustrated in Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF15">15</a>, <a href="#A162501REF19">19</a>-<a href="#A162501REF26">26</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (15, 19-26).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF15">15</a>, <a href="#A162501REF24">24</a>, <a href="#A162501REF27">27</a>-<a href="#A162501REF31">31</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (15, 24, 27-31).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF5">5</a>, <a href="#A162501REF24">24</a>, <a href="#A162501REF30">30</a>-<a href="#A162501REF44">44</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (5, 24, 30-44).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF7">7</a>-<a href="#A162501REF9">9</a>, <a href="#A162501REF35">35</a>, <a href="#A162501REF37">37</a>, <a href="#A162501REF38">38</a>, <a href="#A162501REF45">45</a>-<a href="#A162501REF58">58</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (7-9, 35, 37, 38, 45-58).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their source (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF5">5</a>, <a href="#A162501REF35">35</a>, <a href="#A162501REF38">38</a>, <a href="#A162501REF41">41</a>, <a href="#A162501REF43">43</a>, <a href="#A162501REF59">59</a>-<a href="#A162501REF63">63</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their source (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (5, 35, 38, 41, 43, 59-63).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF5">5</a>, <a href="#A162501REF6">6</a>, <a href="#A162501REF9">9</a>, <a href="#A162501REF13">13</a>, <a href="#A162501REF26">26</a>, <a href="#A162501REF34">34</a>, <a href="#A162501REF39">39</a>, <a href="#A162501REF40">40</a>, <a href="#A162501REF44">44</a>, <a href="#A162501REF64">64</a>-<a href="#A162501REF76">76</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (5, 6, 9, 13, 26, 34, 39, 40, 44, 64-76).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF5">5</a>, <a href="#A162501REF8">8</a>, <a href="#A162501REF13">13</a>, <a href="#A162501REF34">34</a>, <a href="#A162501REF69">69</a>, <a href="#A162501REF74">74</a>, <a href="#A162501REF77">77</a>-<a href="#A162501REF84">84</a>)
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (5, 8, 13, 34, 69, 74, 77-84)

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF4">4</a>, <a href="#A162501REF11">11</a>, <a href="#A162501REF29">29</a>, <a href="#A162501REF39">39</a>, <a href="#A162501REF40">40</a>, <a href="#A162501REF85">85</a>-<a href="#A162501REF91">91</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (4, 11, 29, 39, 40, 85-91).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF10">10</a>, <a href="#A162501REF11">11</a>, <a href="#A162501REF89">89</a>, <a href="#A162501REF91">91</a>-<a href="#A162501REF96">96</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (10, 11, 89, 91-96).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF10">10</a>, <a href="#A162501REF92">92</a>, <a href="#A162501REF93">93</a>, <a href="#A162501REF96">96</a>-<a href="#A162501REF98">98</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (10, 92, 93, 96-98).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF11">11</a>, <a href="#A162501REF40">40</a>, <a href="#A162501REF67">67</a>, <a href="#A162501REF69">69</a>, <a href="#A162501REF71">71</a>, <a href="#A162501REF80">80</a>, <a href="#A162501REF84">84</a>, <a href="#A162501REF94">94</a>, <a href="#A162501REF97">97</a>, <a href="#A162501REF99">99</a>-<a href="#A162501REF103">103</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (11, 40, 67, 69, 71, 80, 84, 94, 97, 99-103).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF40">40</a>, <a href="#A162501REF71">71</a>, <a href="#A162501REF77">77</a>, <a href="#A162501REF87">87</a>, <a href="#A162501REF101">101</a>, <a href="#A162501REF104">104</a>-<a href="#A162501REF107">107</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (40, 71, 77, 87, 101, 104-107).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF4">4</a>, <a href="#A162501REF29">29</a>, <a href="#A162501REF37">37</a>, <a href="#A162501REF38">38</a>, <a href="#A162501REF85">85</a>, <a href="#A162501REF86">86</a>, <a href="#A162501REF108">108</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (4, 29, 37, 38, 85, 86, 108).

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (<a href="#A162501REF4">4</a>, <a href="#A162501REF28">28</a>, <a href="#A162501REF29">29</a>, <a href="#A162501REF86">86</a>, <a href="#A162501REF109">109</a>-<a href="#">111</a>).
Figure 1.

The plant-derived coumarin-hemiterpene ethers (CHEs) and their sources (Abbreviations: A, aerial parts; B, bark; Br, branches; E, epigeal parts; Eo, essential oil; F, fruits; Fl, flowers; L, leaves; O, oil; P, peels; R, root; Rb, root barks; Re, resin; Rh, rhizome; S, stems; Sb, stem bark; Se, seed; T, twigs; U, umbls; Un, underground parts; W, wood; Wh, whole herb) (4, 28, 29, 86, 109-111).

The non-glycosylated NCHEs are found in 15 plant families, including Rutaceae, Asteraceae, Apiaceae, Cucurbitaceae, Amaranthaceae, Myrtaceae, Campanulaceae, Solanaceae, Polygalaceae, Convolvulaceae, Simaroubaceae, Thymelaeaceae, Theaceae, Scrophulariaceae, and Lamiaceae. Their structures, arranged based on the attachment site of the hemiterpene ether portion to the coumarin scaffold, and plant sources containing CHEs, are depicted and presented in Figure 2.

The plant-derived glycosylated coumarin-hemiterpene ethers (CHEs)
Figure 2.

The plant-derived glycosylated coumarin-hemiterpene ethers (CHEs)

As seen in this table, there are no reports of 3-prenyloxy coumarins of plant origin. 4-prenyloxy coumarins and 6-prenyloxy coumarins have very limited distributions. The findings suggest that 5-prenyloxy coumarins are more common, but they are restricted to the Rutaceae, Asteraceae, and Apiaceae families. 7-prenyloxy coumarins are the most prevalent NCHEs, found in 13 families. Among all known NCHEs, 7-isopentenyloxycoumarin and its 6-methoxy derivative are highly prevalent.

A remarkable point about 8-prenyloxy coumarins is that two-thirds of these compounds have been isolated from the Asteraceae (genus Artemisia). Prenyl lacarol and marianin A are NCHEs that contain two hemiterpene ether moieties. These two NCHEs are categorized in a distinct section named diprenyloxy coumarins. Figure 3 presents the occurrence of NCHEs in different plant families.

The occurrence of coumarin-hemiterpene ethers (CHEs) in plant families
Figure 3.

The occurrence of coumarin-hemiterpene ethers (CHEs) in plant families

The Rutaceae (53 compounds), Asteraceae (37 compounds), and Apiaceae (12 compounds) families are the richest sources of NCHEs. However, a limited number of NCHEs (10 compounds) have been reported from the other plant families. The various types of NCHEs isolated from the three families — Rutaceae, Asteraceae, and Apiaceae — are displayed in Table 1.

Table 1.The Coumarin-Hemiterpene Ether-Rich Plant Families
VariablesFamilies
Rutaceae (53 compounds)
4-prenyloxy coumarins-
5-prenyloxy coumarins (8 compounds)Citrus reticulata (20), C. aurantifolia (21), C. medica (22), C. meyeri (23), C. limon (15, 24), Zanthoxylum nitidium (27), Toddalia asiatica (28)
6-prenyloxy coumarins-
7-prenyloxy coumarins (40 compounds)Agathosma collina, A. imbricata, A. martiana, A. mucronulata, A. mundii, A. recurvifolia, A. serpyllacea, A. spinosa, A. thymifolia, A. unicarpellata, A. puberula (40), Melicope lunu-ankenda (59), M. hayesii (41), M. semecarpifolia (42), M. vitiflora (43), M. borbonica (73), Diosma ramosissima, D. prama, D. recurva (40), D. acmaeophylla (39), Coleonema album (37), C. calycinum (38), C. aspalathoides (38), Clausena anisata (60, 92), C. indica (61), C. excavata (98), Citrus trifoliata (93), C. medica (72), C. limon (24), Choisya arizonica, Ch. mollis (90), Ch. ternata (105), Myrtopsis sellingii (94), M. corymbosa (11), Haplophyllum obtusifolium (71, 82), H. ramosissimum (83), Galipea panamensis (95), G. trifoliata (91), Zanthoxylum schinifolium (87), Z. nitidium (111), Poncirus trifoliata (62, 96, 97), Phyllosma capensis (102), Triphasia trifolia (10), Eriostemon spicatus (89), Flindersia brayleyana (107), Euodia vitiflora (35), Asterolasia phebalioides (36), Ptaeroxylon obliquum (65)
8-prenyloxy coumarins (5 compounds)C. calycinum (38), C. album (37), T. asiatica (28), Z. nitidium (111)
Diprenyloxy coumarins-
Asteraceae (37 compounds)
4-prenyloxy coumarins (1 compound)Gerbera crocea (19)
5-prenyloxy coumarins (3 compound)Artemisia laciniata (29)
6-prenyloxy coumarins (2 compound)Carduus tenuiflorus (33), Pterocaulon polystachyum (34)
7-prenyloxy coumarins (23 compound)P. polystachyum (13, 34), P. virgatum (74), P. alopecuroides (13, 84), P. balansae (80), Pt. redolens (106) Artemisia glauca (51), A. dracunculoides (75), Artemisia armeniaca (86), A. apiacea (88), A. laciniata (29), Haplopappus multifolius (5, 81), H. deserticola (44), Isocoma tenuisecta, I. acradenia, I. rusbyi (57), Ozothamnus rosmarinifolius (68), O. lycopodioides (99), Tagetes lucida (8, 9), Helianthus tuberosus (76), Heterotheca inuloides (49), Viguiera gardneri (66), Flourensia thurifera (67), Melampodium divaricatum (85), Psiadia dentata (100), Gochnatia argentina (103), Helichrysum plicatum (101)
8-prenyloxy coumarins (7 compound)Artemisia tanacetifolia (4), A. caruifolia (108), A. armeniaca (4, 86), A. laciniata (4, 29), M. divaricatum (85)
Diprenyloxy coumarins (1 compound)A. armeniaca (4)
Apiaceae (12 compounds)
4-prenyloxy coumarins-
5-prenyloxy coumarins (5 compounds)Seseli sibiricum (30, 31), S. rigidum (32), Angelica gigas (25), Notopterygium incisum (26)
6-prenyloxy coumarins-
7-prenyloxy coumarins (7 compounds)Heracleum mantegazzianum (63), H. dissectum (63), H. lanatum (54), Angelica gigas (70), A. archangelica (52), Notopterygium franchetii (58), N. incisum (26, 58), Ligusticum lucidum (7), Seseli libanotis (35), Bupleurum fruticosum (69), Pimpinella anisum, Anethum graveolens (52), Lomatium nevadense (55), Tordylium apulum (56), Zosima absinthifolia (57), Libanotis intermedia (35)
8-prenyloxy coumarins-
Diprenyloxy coumarins-

The Coumarin-Hemiterpene Ether-Rich Plant Families

The following sections provide detailed descriptions of NCHEs in different plant families.

3.2. Natural Coumarin-Hemiterpene Ethers from Rutaceae

Almost half of the reports on the isolation of NCHEs have resulted from phytochemical investigations on Rutaceae members. There are no reports of 4-prenyloxy coumarins, 6-prenyloxy coumarins, and diprenyloxy coumarins in Rutaceae. The genera Citrus and Agathosma had the highest occurrence of 5-prenyloxy coumarins and 7-prenyloxy coumarins, respectively.

3.3. Natural Coumarin-Hemiterpene Ethers from Asteraceae

Asteraceae is the sole plant family in which NCHEs with all different substitution patterns (based on the attachment site of the hemiterpene ether portion) have been identified. The genera Pterocaulon and Artemisia had the highest number of 7-prenyloxy coumarins and 8-prenyloxy coumarins, respectively.

3.4. Natural Coumarin-Hemiterpene Ethers from Apiaceae

There are no reports of 4-prenyloxy, 6-prenyloxy, 8-prenyloxy, and diprenyloxy coumarins in Apiaceae.

3.5. Natural Coumarin-Hemiterpene Ethers from Other Plant Families

Several phytochemical findings have confirmed that other families, including Cucurbitaceae (109), Amaranthaceae (45, 46), Myrtaceae (47), Campanulaceae (48), Solanaceae (46), Polygalaceae (64), Convolvulaceae (6), Simaroubaceae (77), Thymelaeaceae (78), Theaceae (79), Scrophulariaceae (104), and Lamiaceae (110), also contain NCHEs. The NCHEs from the other plant families are summarized in Table 2. As is evident, most of these families have provided 7-prenyloxy coumarins, particularly 7-isopentenyloxycoumarin (6, 45-48, 64, 77-79, 104), while two families, Cucurbitaceae and Lamiaceae, possess a 4,8-diprenyloxy coumarin and an 8-prenyloxy coumarin, respectively (109, 110).

Table 2.The Other Plant Families Containing Coumarin-Hemiterpene Ethers
Families4-prenyloxy Coumarins5-prenyloxy Coumarins6-prenyloxy Coumarins7-prenyloxy Coumarins8-prenyloxy CoumarinsDiprenyloxy Coumarins
Cucurbitaceae (Cucumisbisexualis)-----Marianin A (109)
Amaranthaceae (Amaranthusretroflexus, Spinaciaoleracea)---7-isopentenyloxycoumarin (45, 46)--
Myrtaceae (Melaleuca alternifolia)---7-isopentenyloxycoumarin (47)--
Campanulaceae (Codonopsispilosula)---7-isopentenyloxycoumarin (48)--
Solanaceae (Lyciumbarbarum)---7-isopentenyloxycoumarin (46)--
Polygalaceae (Polygala sabulosa)---6-methoxy-7-isopentenyloxycoumarin (64)--
Convolvulaceae (Convolvulus trabutianus)---6-methoxy-7-isopentenyloxycoumarin (6)--
Simaroubaceae (Ailanthus altissima)---6-methoxy-7-isopentenyloxycoumarin (77), Altissimacoumarin N (77), Puberulin (77)--
Thymelaeaceae (Daphne oleoides)---Virgatenol (78)--
Theaceae (Euryachinensis)---Haplopinol methyl ether, 6-demethyl obtusinin (79)--
Scrophulariaceae (Verbascumthapsus)---2´, 3´dihydroxy puberulin (104)--
Lamiaceae (Gmelinaarborea)----Artanin (110)-

The Other Plant Families Containing Coumarin-Hemiterpene Ethers

3.6. Chemotaxonomic Significance of Natural Coumarin-Hemiterpene Ethers

The NCHEs possess considerable chemotaxonomic significance, as many of them (71 compounds) have been identified exclusively in single plant families to date. The Rutaceae family has the highest number of unique NCHEs (40 compounds). Furthermore, more than three-fourths of the exclusive NCHEs in the Rutaceae family (31 compounds) are genus-specific or species-specific. Two genera, Citrus and Coleonema, provide six exclusive NCHEs, while the number of genus-specific NCHEs in Melicope, Galipea, and Myrtopsis is three, two, and one, respectively. It is noteworthy that Poncirus trifoliata, Flindersia brayleyana, and Eriostemon spicatus possess six, three, and two species-specific NCHEs, respectively. Additionally, each of the two species, Clausena anisata and Haplophyllum obtusifolium, contains one species-specific NCHE.

Nearly half of the exclusive NCHEs in the Rutaceae family (18 compounds) are 8-C-prenylated 7-prenyloxy coumarins that were observed in eight genera, including Myrtopsis, Poncirus, Clausena, Triphasia, Citrus, Galipea, Eriostemon, and Choisya. Besides, three species-specific NCHEs in F. brayleyana are the 8-C-prenylated 6-methoxy 7-prenyloxy coumarin derivatives. The structural pattern of 5-hydroxy 7-prenyloxy coumarin is restricted to the Poncirus and Clausena genera, while the pattern of 5-prenyloxy 7-hydroxy coumarin is characteristic of the genus Citrus and is specifically found in Citrus reticulata.

The occurrence of 23 exclusive NCHEs has been reported in the Asteraceae family. The genus Artemisia contains 10 unique NCHEs, among which four are species-specific to A. laciniata, and three are species-specific to A. armeniaca. Moreover, six exclusive NCHEs belong to the genus Pterocaulon, of which two are species-specific to Pterocaulon balansae, and the other two are species-specific to P. polystachyum, while P. virgatum provides one species-specific NCHE. Additionally, Melampodium divaricatum possesses two species-specific NCHEs, and one unique NCHE has been reported for each of the following species: Gerbera crocea, Carduus tenuiflorus, and Haplopappus multifolius.

Two other exclusive NCHEs in the Asteraceae family have been found in more than one genus (Ozothamnus, Psiadia, Pterocaulon, and Helichrysum). The substitution pattern of both is 5-hydroxy 6-methoxy 7-prenyloxy, which has not been observed in other plant families. Other exclusive NCHE substitution patterns observed in Asteraceae include 4-prenyloxy 5-methyl (found in the genus Gerbera), 6-prenyloxy 7-methoxy (found in the genera Carduus and Pterocaulon), 5,6-dimethoxy 7-prenyloxy (found in the genus Pterocaulon), 7-prenyloxy 8-hydroxy (found in the genera Artemisia and Melampodium), 5-hydroxy 7-methoxy 8-prenyloxy (found in the genus Artemisia), 7-hydroxy 8-prenyloxy (found in the genera Artemisia and Melampodium), and 5,8-diprenyloxy 7-methoxy (found in the genus Artemisia).

There are five NCHEs restricted to the Apiaceae family. These compounds exhibit two exclusive substitution patterns, including 5-methoxy 7-prenyloxy (found in Heracleum) and 5-prenyloxy 7-methoxy 8-prenyl (found in Seseli). Besides, three NCHEs are species-specific to Seseli sibiricum. One exclusive NCHE has been reported for each of the families Cucurbitaceae (Cucumis bisexualis), Theaceae (Eurya chinensis), and Simaroubaceae (Ailanthus altissima). The Cucurbitaceae family (C. bisexualis) provides a notable exclusive substitution pattern (4, 7-diprenyloxy 5-methyl).

In summary, the Rutaceae family possesses the highest number of exclusive NCHEs, following eight substitution patterns. Half of these patterns are not observed in other plant families. The 7-prenyloxy 8-prenyl pattern is found with the greatest abundance across eight genera. The Asteraceae family exhibits the highest diversity of unique substitution patterns, mainly with a distribution limited to a single genus (4 patterns) or two genera (3 patterns). Among all plant genera studied, Artemisia has the highest number of exclusive NCHEs (10 compounds). The Apiaceae and Cucurbitaceae families exhibit five and one exclusive NCHEs, respectively. All of these compounds also display specific substitution patterns that are observed exclusively in these two families. Moreover, one exclusive NCHE has been reported from each family, Theaceae and Simaroubaceae. However, similar substitution patterns have been observed in NCHEs from other families.

4. Conclusions

The CHEs are a class of coumarins in which a hemiterpene moiety (C5) is attached to the coumarin scaffold by O-prenylation. The plant-derived CHEs were abundantly isolated from the Rutaceae, Asteraceae, and Apiaceae families. However, these compounds have also been reported in 12 other plant families. 7-isopentenyloxycoumarin is the most common NCHE. Almost 80% of NCHEs have been exclusively isolated from a single plant family. The highest number of exclusive NCHEs was identified in the Rutaceae family, while the Asteraceae family exhibits the highest diversity of unique substitution patterns. Accordingly, NCHEs can be considered valuable chemotaxonomic markers.

4.1. Study Limitations

The number of phytochemical studies in some plant families and genera was not sufficient to draw definitive conclusions about the chemotaxonomic significance of isolated NCHEs.

4.2. Future Directions

The findings of this study may help researchers conduct phytochemical studies on the plant genera that are likely to be rich in this type of secondary metabolite. This, in turn, will increase our understanding of their chemotaxonomic significance.

Footnotes

References

  • 1.
    Curini M, Cravotto G, Epifano F, Giannone G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem. 2006;13(2):199-222. [PubMed ID: 16472213]. https://doi.org/10.2174/092986706775197890.
  • 2.
    Tetali SD. Terpenes and isoprenoids: a wealth of compounds for global use. Planta. 2019;249(1):1-8. [PubMed ID: 30467631]. https://doi.org/10.1007/s00425-018-3056-x.
  • 3.
    Farozi A. Study on Chemistry of Some Medicinally Important Plants of Jammu and Kashmir [Dissertation]. Srinagar, India: National Institute of Technology Srinagar; 2017.
  • 4.
    Szabó G, Greger H, Hofer O. Coumarin-hemiterpene ethers from Artemisia species. Phytochem. 1985;24(3):537-41. https://doi.org/10.1016/s0031-9422(00)80763-3.
  • 5.
    Torres R, Faini F, Modak B, Urbina F, Labbe C, Guerrero J. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochem. 2006;67(10):984-7. [PubMed ID: 16684545]. https://doi.org/10.1016/j.phytochem.2006.03.016.
  • 6.
    Belaouira R, Marchioni E, Benayache F, Benayache S. On-line screening and identification of polyphenolic antioxidant compounds of Convolvulus trabutianus. Nat Prod Res. 2020;34(10):1490-3. [PubMed ID: 30518259]. https://doi.org/10.1080/14786419.2018.1510398.
  • 7.
    Menghini L, Epifano F, Genovese S, Marcotullio MC, Sosa S, Tubaro A. Antiinflammatory activity of coumarins from Ligusticum lucidum Mill. subsp. cuneifolium (Guss.) Tammaro (Apiaceae). Phytother Res. 2010;24(11):1697-9. [PubMed ID: 21031631]. https://doi.org/10.1002/ptr.3170.
  • 8.
    Sandra Liliana PD, Manases GC, Enrique JF, Ruben RR, Cinthya BP, Belen MG, et al. Isolation, chemical characterization, and anti-inflammatory activity of coumarins, flavonoids, and terpenes from Tagetes lucida. Nat Prod Res. 2022;36(18):4751-6. [PubMed ID: 34789033]. https://doi.org/10.1080/14786419.2021.2005592.
  • 9.
    Nayeli MB, Maribel HR, Enrique JF, Rafael BP, Margarita AF, Macrina FM, et al. Anti-inflammatory activity of coumarins isolated from Tagetes lucida Cav. Nat Prod Res. 2020;34(22):3244-8. [PubMed ID: 30618303]. https://doi.org/10.1080/14786419.2018.1553172.
  • 10.
    Likhitwitayawuid K, Supudompol B, Sritularak B, Lipipun V, Rapp K, Schinazi RF. Phenolics with Anti-HSV and Anti-HIV Activities fromArtocarpus gomezianus.,Mallotus pallidus., andTriphasia trifolia. Pharm Biol. 2008;43(8):651-7. https://doi.org/10.1080/13880200500383058.
  • 11.
    Coulerie P, Maciuk A, Lebouvier N, Hnawia E, Guillemot J, Canard B, et al. Phytochemical study of myrtopsis corymbosa, perspectives for anti-dengue natural compound research. Rec Nat Prod. 2013;7(3):250.
  • 12.
    Rahalison L, Benathan M, Monod M, Frenk E, Gupta MP, Solis PN, et al. Antifungal principles of Baccharis pedunculata. Planta Med. 1995;61(4):360-2. [PubMed ID: 7480184]. https://doi.org/10.1055/s-2006-958101.
  • 13.
    Stein AC, Alvarez S, Avancini C, Zacchino S, von Poser G. Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol. 2006;107(1):95-8. [PubMed ID: 16574360]. https://doi.org/10.1016/j.jep.2006.02.009.
  • 14.
    Mojarrab M, Emami SA, Delazar A, Tayarani-Najaran Z. Cytotoxic Properties of Three Isolated Coumarin-hemiterpene Ether Derivatives from Artemisia armeniaca Lam. Iran J Pharm Res. 2017;16(1):221-9. [PubMed ID: 28496477]. [PubMed Central ID: PMC5423249].
  • 15.
    Matsumoto T, Takahashi K, Kanayama S, Nakano Y, Imai H, Kibi M, et al. Structures of antimutagenic constituents in the peels of Citrus limon. J Nat Med. 2017;71(4):735-44. [PubMed ID: 28699128]. https://doi.org/10.1007/s11418-017-1108-3.
  • 16.
    Iranshahi M, Jabbari A, Orafaie A, Mehri R, Zeraatkar S, Ahmadi T, et al. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Eur J Med Chem. 2012;57:134-42. [PubMed ID: 23047230]. https://doi.org/10.1016/j.ejmech.2012.09.006.
  • 17.
    Mojarrab M, Delazar A, Hamburger M, Potterat O. New coumarin-hemiterpene ether glucosides and a structurally related phenylpropanoic acid derivative from Artemisia armeniaca. Nat Prod Commun. 2010;5(10):1619-22. [PubMed ID: 21121260].
  • 18.
    Razavi SM, Nazemiyeh H, Delazar A, Hajiboland R, Rahman M, Gibbons S, et al. Coumarins from the roots of Prangos uloptera. Phytochem Lett. 2008;1(3):159-62. https://doi.org/10.1016/j.phytol.2008.07.009.
  • 19.
    Kirsch G, Abdelwahab AB, Chaimbault P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules. 2016;21(10). [PubMed ID: 27706093]. [PubMed Central ID: PMC6273422]. https://doi.org/10.3390/molecules21101322.
  • 20.
    Phetkul U, Phongpaichit S, Watanapokasin R, Mahabusarakam W. New depside from Citrus reticulata Blanco. Nat Prod Res. 2014;28(13):945-51. [PubMed ID: 24635118]. https://doi.org/10.1080/14786419.2014.896010.
  • 21.
    Costa R, Russo M, De Grazia S, Grasso E, Dugo P, Mondello L. Thorough investigation of the oxygen heterocyclic fraction of lime (Citrus aurantifolia (Christm.) Swingle) juice. J Sep Sci. 2014;37(7):792-7. [PubMed ID: 24478239]. https://doi.org/10.1002/jssc.201300986.
  • 22.
    Wang C, Huang J, Zhou Z, Xu P, Shi J, Yang Y, et al. Coumarins from Jinhua Finger Citron: Separation by Liquid-Liquid Chromatography and Potential Antitumor Activity. Molecules. 2023;28(19). [PubMed ID: 37836760]. [PubMed Central ID: PMC10574065]. https://doi.org/10.3390/molecules28196917.
  • 23.
    Miyake Y, Ito C, Tokuda H, Suzuki N, Itoigawa M. Evaluation for Antitumor-promoting Activity of Meyerin and 7-Methoxy-5-prenyloxycoumarin in Meyer Lemon. Food Sci Technol Res. 2015;21(6):879-82. https://doi.org/10.3136/fstr.21.879.
  • 24.
    Ziegler H, Spiteller G. Coumarins and psoralens from sicilian lemon oil (Citrus limon (L.) Burm. f.). Flavour Fragr J. 2006;7(3):129-39. https://doi.org/10.1002/ffj.2730070307.
  • 25.
    Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J Nat Prod. 2001;64(5):683-5. [PubMed ID: 11374978]. https://doi.org/10.1021/np000441w.
  • 26.
    Wu SB, Zhao Y, Fan H, Hu YH, Hamann MT, Peng JN, et al. New guaiane sesquiterpenes and furanocoumarins from Notopterygium incisum. Planta Med. 2008;74(15):1812-7. [PubMed ID: 18991202]. [PubMed Central ID: PMC4883698]. https://doi.org/10.1055/s-0028-1088326.
  • 27.
    Deng Y, Ding T, Deng L, Hao X, Mu S. Active constituents of Zanthoxylum nitidium from Yunnan Province against leukaemia cells in vitro. BMC Chem. 2021;15(1):44. [PubMed ID: 34301301]. [PubMed Central ID: PMC8305521]. https://doi.org/10.1186/s13065-021-00771-0.
  • 28.
    Song SC, Ren BD, Wu XW, Xie YF, Cheng B, Wei Q, et al. Asiaticasics A-O, structurally intriguing coumarins from Toddalia asiatica with potential inflammatory inhibitory activity. Phytochem. 2024;221:114042. [PubMed ID: 38417721]. https://doi.org/10.1016/j.phytochem.2024.114042.
  • 29.
    Hofer O, Szabó G, Greger H, Nikiforov A. Leaf coumarins from the Artemisia laciniata group. Liebigs Ann Chem. 2006;1986(12):2142-9. https://doi.org/10.1002/jlac.198619861208.
  • 30.
    Banerjee SK, Gupta BD, Kumar R, Atal CK. New coumarins from the umbels of Seseli sibiricum. Phytochem. 1980;19(2):281-4. https://doi.org/10.1016/s0031-9422(00)81974-3.
  • 31.
    Kumar R, Gupta BD, Banerjee SK, Atal CK. New coumarins from Seseli sibiricum. Phytochem. 1978;17(12):2111-4. https://doi.org/10.1016/s0031-9422(00)89291-2.
  • 32.
    Stankov-Jovanovic VP, Ilic MD, Mitic VD, Mihajilov-Krstev TM, Simonovic SR, Nikolic Mandic SD, et al. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity. J Pharm Biomed Anal. 2015;111:78-90. [PubMed ID: 25863020]. https://doi.org/10.1016/j.jpba.2015.03.015.
  • 33.
    Cardona L, García B, José R P, Pérez J. 6-Prenyloxy-7-methoxycoumarin, a coumarin-hemiterpene ether from Carduus tenuiflorus. Phytochem. 1992;31(11):3989-91. https://doi.org/10.1016/s0031-9422(00)97569-1.
  • 34.
    Vera N, Bardon A, Catalan CA, Gedris TE, Herz W. New coumarins from Pterocaulon polystachyum. Planta Med. 2001;67(7):674-7. [PubMed ID: 11582550]. https://doi.org/10.1055/s-2001-17365.
  • 35.
    Lassak E, Southwell I. The Coumarins From the Resin of Euodia vitiflora. Aust J Chem. 1972;25(11). https://doi.org/10.1071/ch9722491.
  • 36.
    Sarker SD, Armstrong JA, Gray AI, Waterman PG. Coumarins from Asterolasia phebalioides (Rutaceae). Biochem Syst Ecol. 1994;22(4). https://doi.org/10.1016/0305-1978(94)90036-1.
  • 37.
    Gray AI. New coumarins from Coleonema album. Phytochem. 1981;20(7):1711-3. https://doi.org/10.1016/s0031-9422(00)98560-1.
  • 38.
    Gray AI, Meegan CJ, O'Callaghan NB. Coumarins from two Coleonema species. Phytochem. 1986;26(1):257-60. https://doi.org/10.1016/s0031-9422(00)81523-x.
  • 39.
    Campbell WE, Provan GJ, Waterman PG. Simple coumarins from two populations of Diosma acmaeophylla. Phytochem. 1982;21(6):1457-8. https://doi.org/10.1016/0031-9422(82)80171-4.
  • 40.
    Cambell WE, Majal T, Bean A. Coumarins of the rutoideae: Tribe Diosmeae. Phytochem. 1986;25(3):655-7. https://doi.org/10.1016/0031-9422(86)88018-9.
  • 41.
    Latip J, Hartley TG, Waterman PG. Lignans and coumarins metabolites from Melicopehayesii. Phytochem. 1999;51(1):107-10. https://doi.org/10.1016/s0031-9422(98)00720-1.
  • 42.
    Chou HC, Chen JJ, Duh CY, Huang TF, Chen IS. Cytotoxic and anti-platelet aggregation constituents from the root wood of Melicope semecarpifolia. Planta Med. 2005;71(11):1078-81. [PubMed ID: 16320216]. https://doi.org/10.1055/s-2005-871295.
  • 43.
    O'Donnell F, Ramachandran VN, Smyth TJ, Smyth WF, Brooks P. An investigation of bioactive phytochemicals in the leaves of Melicope vitiflora by electrospray ionisation ion trap mass spectrometry. Anal Chim Acta. 2009;634(1):115-20. [PubMed ID: 19154819]. https://doi.org/10.1016/j.aca.2008.11.066.
  • 44.
    Zdero C, Bohlmann F, Niemeyer HM. Diterpenes and umbelliferone derivatives from Haplopappus deserticola. Phytochem. 1990;29(1):326-9. https://doi.org/10.1016/0031-9422(90)89064-g.
  • 45.
    Ito C, Matsui T, Tokuda H, Tan HT, Itoigawa M. Cancer chemopreventive constituents from Melicope lunu-ankenda. Phytochem Lett. 2017;20:172-6.
  • 46.
    Ngadjui BT, Ayafor JF, Sondengam BL, Connolly JD. Coumarins from Clausena anisata. Phytochem. 1989;28(2):585-9.
  • 47.
    Quan NV, Xuan TD, Anh LH, Tran H. Bio-guided isolation of prospective bioactive constituents from roots of Clausena indica (Dalzell) Oliv. Molecules. 2019;24(24):4442.
  • 48.
    Feng T, Wang R, Cai X, Zheng Y, Luo X. Anti-human immunodeficiency virus-1 constituents of the bark of Poncirus trifoliata. Chem Pharm Bull. 2010;58(7):971-5.
  • 49.
    Glowniak K, Mroczek T, Zabza A, Cierpicki T. Isolation And Structure Elucidation Of 5,7-disubstituted Simple Coumarins In The Fruits Of Heracleum Mantegazzianum. Pharm Biol. 2000;38(4):308-12. [PubMed ID: 21214482]. https://doi.org/10.1076/1388-0209(200009)3841-AFT308.
  • 50.
    Pizzolatti MG, Luciano C, Monache FD. Styryl- and dihydrostyryl-2-pyrones derivatives from Polygala sabulosa. Phytochem. 2000;55(7):819-22. [PubMed ID: 11190403]. https://doi.org/10.1016/s0031-9422(00)00301-0.
  • 51.
    Agostinho D, Boudesocque L, Thery-Kone I, Debierre-Grockiego F, Gueiffier A, Enguehard-Gueiffier C, et al. A new meroterpenoid isolated from roots of Ptaeroxylon obliquum Radlk. Phytochem Lett. 2013;6(4):560-6.
  • 52.
    Schorr K, Garcia-Pineres AJ, Siedle B, Merfort I, Da Costa FB. Guaianolides from Viguiera gardneri inhibit the transcription factor NF-kappaB. Phytochem. 2002;60(7):733-40. [PubMed ID: 12127591]. https://doi.org/10.1016/s0031-9422(02)00197-8.
  • 53.
    Faini F, Labbe C, Salgado I, Coll J. Chemistry, toxicity and antifeedant activity of the resin of Flourensia thurifera. Biochem System Ecol. 1997;25(3):189-93.
  • 54.
    Wollenweber E, Fischer R, Dörr M, Irvine K, Pereira C, Stevens JF. Chemodiversity of exudate flavonoids in Cassinia and Ozothamnus (Asteraceae, Gnaphalieae). Z Naturforsch C J Biosci. 2008;63(9-10):731-9.
  • 55.
    Pistelli L, Bertoli A, Bilia AR, Morelli I. Minor constituents from Bupleurum fruticosum roots. Phytochem. 1996;41(6):1579-82.
  • 56.
    Dschang Jong Jung PA, Huneck S. Gigasol and other coumarins from Angelica gigas. Phytochem. 1991;30(2):710-2.
  • 57.
    Batirov ÉK, Matkarimov AD, Malikov VM, Yagudaev MR, Seitmuratov E. New coumarins of Haplophyllum obtusifolium. Chem Nat Compd. 1981;16(6):558-61.
  • 58.
    Zheng Z, Hu H, Zeng L, Yang H, Yang T, Wang D, et al. Analysis of the characteristic compounds of Citri Sarcodactylis Fructus from different geographical origins. Phytochem Anal. 2022;33(1):72-82. [PubMed ID: 34114292]. https://doi.org/10.1002/pca.3069.
  • 59.
    Simonsen HT, Adsersen A, Bremner P, Heinrich M, Wagner Smitt U, Jaroszewski JW. Antifungal constituents of Melicope borbonica. Phytother Res. 2004;18(7):542-5. [PubMed ID: 15305313]. https://doi.org/10.1002/ptr.1482.
  • 60.
    Debenedetti SL, Nadinic EL, Coussio JD, De Kimpe N, Boeykens M. Two 6, 7-dioxygenated coumarins from Pterocaulon virgatum. Phytochem. 1998;48(4):707-10.
  • 61.
    Herz W, Bhat SV, Santhanam PS. Coumarins of Artemisia dracunculoides and 3′, 6-dimethoxy-4′, 5, 7-trihydroxyflavone in A. arctica. Phytochem. 1970;9(4):891-4.
  • 62.
    Jantaharn P, Mongkolthanaruk W, Senawong T, Jogloy S, McCloskey S. Bioactive compounds from organic extracts of Helianthus tuberosus L. flowers. Ind Crop Prod. 2018;119:57-63.
  • 63.
    Yan ZY, Lv TM, Wang YX, Shi SC, Chen JJ, Bin L, et al. Terpenylated coumarins from the root bark of Ailanthus altissima (Mill.) Swingle. Phytochem. 2020;175:112361. [PubMed ID: 32289598]. https://doi.org/10.1016/j.phytochem.2020.112361.
  • 64.
    Riaz M, Malik A. Novel Coumarin Glycosides fromDaphne oleoides. Helv Chim Acta. 2001;84(3):656-61. https://doi.org/10.1002/1522-2675(20010321)84:3.
  • 65.
    Song JL, Yuan Y, Tan HB, Huang RM, Liu HX, Xu ZF, et al. Anti-inflammatory and antimicrobial coumarins from the stems of Eurya chinensis. J Asian Nat Prod Res. 2017;19(3):222-8. [PubMed ID: 27299182]. https://doi.org/10.1080/10286020.2016.1191474.
  • 66.
    Medeiros-Neves B, De Barros FMC, Von Poser GL, Ferreira Teixeira H. Quantification of coumarins in aqueous extract of Pterocaulon balansae (Asteraceae) and characterization of a new compound. Molecules. 2015;20(10):18083-94.
  • 67.
    Chiang MT, Bittner M, Silva M, Mondaca A, Zemelman R, Sammes PG. A prenylated coumarin with antimicrobial activity from Haplopappus multifolius. Phytochem. 1982;21(11):2753-5.
  • 68.
    Matkarimov AD, Batirov ÉK, Malikov VM, Seitmuratov E. Obtusinin—a new coumarin from Haplophyllum obtusifolium. Chem Nat Compd. 1980;16:240-2.
  • 69.
    Bessonova IA, Kurbanov D, Yunusov SY. Components of the leaves of Haplophyllum ramosissimum. Chem Nat Compd. 1990;26(2):234.
  • 70.
    Vilegas W, Boralle N, Cabrera A, Bernardi AC, Pozetti GL, Arantes SF. Coumarins and a flavonoid from Pterocaulon alopecuroides. Phytochem. 1995;38(4):1017-9.
  • 71.
    Borges-Del-Castillo J, Martinez-Martir AI, Rodriguez-Luis F, Rodriguez-Ubis JC, Vazquez-Bueno P. Isolation and synthesis of two coumarins from Melampodium divaricatum. Phytochem. 1984;23(4):859-61.
  • 72.
    Mojarrab M, Delazar A, Moghadam SB, Nazemiyeh H, Nahar L, Kumarasamy Y, et al. Armenin and isoarmenin–two prenylated coumarins from the aerial parts of Artemisia armeniaca. Chem Biodiver. 2011;8(11):2097-103.
  • 73.
    Li W, Sun YN, Yan XT, Yang SY, Kim E, Kang HK, et al. Coumarins and lignans from Zanthoxylum schinifolium and their anticancer activities. J Agric Food Chem. 2013;61(45):10730-40.
  • 74.
    Shimomura H, SASHIDA YUTAKA, OHSHIMA YUKIO. The chemical components of Artemisia apiacea Hance. II. More coumarins from the flower heads. Chem Pharm Bull. 1980;28(1):347-8.
  • 75.
    Rashid MA, Gray AI, Waterman PG, Armstrong JA. Coumarins from Eriostemon spicatus. J Nat Prod. 1992;55(5):685-7.
  • 76.
    Dreyer DL, Pickering MV, Cohan P. Distribution of limonoids in the Rutaceae. Phytochem. 1972;11(2):705-13.
  • 77.
    Wirasutisna KR, Gleye J, Moulis C, Stanislas E, Moretti C. Galipein, a coumarin from Galipea trifoliata. Phytochem. 1987;26(12):3372.
  • 78.
    Ngadjui BT, Ayafor JF, Sondengam BL, Connolly JD. Prenylated Coumarins from the Leaves of Clausena anisata. J Nat Prod. 1989;52(2):243-7. https://doi.org/10.1021/np50062a003.
  • 79.
    Kerekes D, Horvath A, Kusz N, Borcsa BL, Szemeredi N, Spengler G, et al. Coumarins, furocoumarins and limonoids of Citrus trifoliata and their effects on human colon adenocarcinoma cell lines. Heliyon. 2022;8(9). e10453. [PubMed ID: 36097483]. [PubMed Central ID: PMC9463373]. https://doi.org/10.1016/j.heliyon.2022.e10453.
  • 80.
    Hifnawy MS, Vaquette J, Pousset JL, Cave A. [Neutral products of Myrtopsis sellingii: two new coumarins, myrsellin and myrsellinol]. Planta Med. 1977;31(2):156-62. FR. [PubMed ID: 854544]. https://doi.org/10.1055/s-0028-1097509.
  • 81.
    Arango V, Robledo S, Séon-Méniel B, Figadere B, Cardona W, Sáez J, et al. Coumarins from Galipea panamensis and their activity against Leishmania panamensis. J Nat Prod. 2010;73(5):1012-4.
  • 82.
    Guiotto A, Rodighiero P, Pastorini G, Celon E. Coumarins from unripe fruits of Poncirus trifoliata. Phytochem. 1977;16(8):1257-60.
  • 83.
    Park JS, Chung B, Lee WH, Lee J, Suh Y, Oh DC, et al. Sortase A-Inhibitory Coumarins from the Folk Medicinal Plant Poncirus trifoliata. J Nat Prod. 2020;83(10):3004-11. [PubMed ID: 32996318]. https://doi.org/10.1021/acs.jnatprod.0c00551.
  • 84.
    Seo C, Ahn E-K, Kang J-S, Lee J-H, Oh JS, Hong SS. Excavasides A and B, two new flavonoid glycosides from Clausena excavata Burm. f.(Rutaceae). Phytochem Lett. 2017;20:93-7.
  • 85.
    Rumbero A, Arriaga-Giner FJ, Wollenweber E. A new oxyprenyl coumarin and highly methylated flavones from the exudate of Ozothamnus lycopodioides (Asteraceae). Z Naturforsch C J Biosci. 2000;55(1-2):1-4. [PubMed ID: 10739091]. https://doi.org/10.1515/znc-2000-1-202.
  • 86.
    Fortin H, Tomasi S, Jaccard P, Robin V, Boustie J. A prenyloxycoumarin from Psiadia dentata. Chem Pharm Bull. 2001;49(5):619-21. [PubMed ID: 11383617]. https://doi.org/10.1248/cpb.49.619.
  • 87.
    Vujic B, Vidakovic V, Jadranin M, Novakovic I, Trifunovic S, Tesevic V, et al. Composition, Antioxidant Potential, and Antimicrobial Activity of Helichrysum plicatum DC. Various Extracts. Plants. 2020;9(3). [PubMed ID: 32155955]. [PubMed Central ID: PMC7154845]. https://doi.org/10.3390/plants9030337.
  • 88.
    Campbell WE, Cragg GM. A New Coumarin from Phyllosma capensis. São Paulo, Brazil: CABI Digital Library; 1979.
  • 89.
    Garcia EE, Guerreiro E. Sesquiterpene lactones from Gochnatia palosanto and coumarins from G. argentina. Phytochem. 1988;27(1):288-90.
  • 90.
    Tamura S, Yoshihira K, Kawano T, Murakami N. Inhibitor for FcepsilonRI expression on mast cell from Verbasucum thapsus L. Bioorg Med Chem Lett. 2018;28(20):3342-5. [PubMed ID: 30217416]. https://doi.org/10.1016/j.bmcl.2018.09.007.
  • 91.
    Donald GR, de Carvalho PR, Fernandes PD, Boylan F. Antinociceptive activity of puberulin and choisyine from ethanol extract of Choisya ternata Kunth var. Sundance. Biomed Pharmacother. 2021;141:111926. [PubMed ID: 34323696]. https://doi.org/10.1016/j.biopha.2021.111926.
  • 92.
    Ishikawa T, Kanlayavattanakul M, Ruangrungsi N, Watanabe T. Chemical Constituents of Pterocaulon redolens. Heterocycles. 2003;61:10.3987. https://doi.org/10.3987/COM-03-S16.
  • 93.
    Moreira AS, Mathias L, Braz-Filho R, Schripsema J, Vieira IJ. Two new diprenylated coumarins from Flindersia brayleyana. Nat Prod Lett. 2002;16(4):291-5. [PubMed ID: 12168767]. https://doi.org/10.1080/10575630290020668.
  • 94.
    Barua NC, Sharma RP, Madhusudanan K, Thyagarajan G, Herzt W. Coumarins in Artemisia caruifolia. Phytochem. 1980;19(10):2217-8.
  • 95.
    Ma QG, Wei RR, Yang M, Huang XY, Wang F, Sang ZP, et al. Molecular Characterization and Bioactivity of Coumarin Derivatives from the Fruits of Cucumis bisexualis. J Agric Food Chem. 2018;66(22):5540-8. [PubMed ID: 29775541]. https://doi.org/10.1021/acs.jafc.8b00976.
  • 96.
    Kubo M, Irimajiri R, Kawata M, Takahashi Y, Hayashi K, Matsuno M, et al. Prenylated-coumarins from Gmelina arborea and evaluation for neurotrophic activity. Phytochem. 2023;213:113721. [PubMed ID: 37279871]. https://doi.org/10.1016/j.phytochem.2023.113721.
  • 97.
    Zuo GY, Wang CJ, Han J, Li YQ, Wang GC. Synergism of coumarins from the Chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Phytomed. 2016;23(14):1814-20. [PubMed ID: 27912884]. https://doi.org/10.1016/j.phymed.2016.11.001.
  • 98.
    Suleimen YM, Jose RA, Suleimen RN, Ishmuratova MY, Toppet S, Dehaen W, et al. Isolation and In Silico SARS-CoV-2 Main Protease Inhibition Potential of Jusan Coumarin, a New Dicoumarin from Artemisia glauca. Molecules. 2022;27(7). [PubMed ID: 35408682]. [PubMed Central ID: PMC9000794]. https://doi.org/10.3390/molecules27072281.
  • 99.
    Delgado G, del Socorro Olivares M, Chavez MI, Ramirez-Apan T, Linares E, Bye R, et al. Antiinflammatory constituents from Heterotheca inuloides. J Nat Prod. 2001;64(7):861-4. [PubMed ID: 11473412]. https://doi.org/10.1021/np0005107.
  • 100.
    Nakata H, Sashida Y, Shimomura H. A new phenolic compound from heracleum lanatum Michx. var. nippinicum Hara. II. Chem Pharm Bull. 1982;30(12):4554-6. https://doi.org/10.1248/cpb.30.4554.
  • 101.
    Taddeo VA, Genovese S, Medina P, Palmisano R, Epifano F, Fiorito S. Quantification of biologically active O-prenylated and unprenylated phenylpropanoids in dill (Anethum graveolens), anise (Pimpinella anisum), and wild celery (Angelica archangelica). J Pharm Biomed Anal. 2017;134:319-24. [PubMed ID: 27916506]. https://doi.org/10.1016/j.jpba.2016.11.048.
  • 102.
    Xu K, Jiang S, Zhou Y, Zhang Y, Xia B, Xu X, et al. Discrimination of the seeds of Notopterygium incisum and Notopterygium franchetii by validated HPLC-DAD-ESI-MS method and principal component analysis. J Pharm Biomed Anal. 2011;56(5):1089-93. [PubMed ID: 21856104]. https://doi.org/10.1016/j.jpba.2011.07.034.
  • 103.
    Beauchamp PS, Dev BC, Dev V, Midland SL, Sims JJ. CaliforniaLomatiums, Part VII. Analysis of the Essential Oils ofLomatium nevadense(Watson) J. Coulter et Rose var.Parishii(J. Coulter et Rose) Jepson. Isolation oftrans-Dauc-8-en-11-ol, a New Sesquiterpene Alcohol and Naturally Occurring 2′,3′,3′-Trimethyl-2′,3′-Dihydroangelicin. J Essent Oil Res. 2007;19(2):117-24. https://doi.org/10.1080/10412905.2007.9699243.
  • 104.
    Kofinas C, Chinou L, Loukis A, Harvala C, Roussakis C, Maillard M, et al. Cytotoxic Coumarins from the Aerial Parts ofTordylium apulumand their Effects on a Non-Small-Cell Bronchial Carcinoma Cell Line. Planta Med. 2007;64(2):174-6. https://doi.org/10.1055/s-2006-957398.
  • 105.
    Razavi SM, Imanzadeh G, Davari M. Coumarins from Zosima absinthifolia seeds, with allelopatic effects. EurAsian J BioSci. 2010;(4):17-22. https://doi.org/10.5053/ejobios.2010.4.0.3.
  • 106.
    Fiorito S, Epifano F, Palmisano R, Genovese S, Taddeo VA. A re-investigation of the phytochemical composition of the edible herb Amaranthus retroflexus L. J Pharm Biomed Anal. 2017;143:183-7. [PubMed ID: 28605679]. https://doi.org/10.1016/j.jpba.2017.05.051.
  • 107.
    Fiorito S, Preziuso F, Epifano F, Scotti L, Bucciarelli T, Taddeo VA, et al. Novel biologically active principles from spinach, goji and quinoa. Food Chem. 2019;276:262-5. [PubMed ID: 30409593]. https://doi.org/10.1016/j.foodchem.2018.10.018.
  • 108.
    Scotti L, Genovese S, Bucciarelli T, Martini F, Epifano F, Fiorito S, et al. Analysis of biologically active oxyprenylated phenylpropanoids in Tea tree oil using selective solid-phase extraction with UHPLC-PDA detection. J Pharm Biomed Anal. 2018;154:174-9. [PubMed ID: 29549856]. https://doi.org/10.1016/j.jpba.2018.03.004.
  • 109.
    Wang R, Su P, Zhang Z, Li B, Hu F, Gao K, et al. Triterpenoids, Steroids, and Other Constituents of the Roots of Codonopsis pilosula. Chem Nat Compd. 2021;57(6):1160-2. https://doi.org/10.1007/s10600-021-03577-7.

Crossmark
Crossmark
Checking
Share on
Cited by
Metrics

Purchasing Reprints

  • Copyright Clearance Center (CCC) handles bulk orders for article reprints for Brieflands. To place an order for reprints, please click here (   https://www.copyright.com/landing/reprintsinquiryform/ ). Clicking this link will bring you to a CCC request form where you can provide the details of your order. Once complete, please click the ‘Submit Request’ button and CCC’s Reprints Services team will generate a quote for your review.
Search Relations

Author(s):

Related Articles