Abstract
Context:
Essential oils are secondary metabolites with versatile organic structures that, due to their compounds, have useful medicinal properties. There are about 250 species of the genus of Scutellaria perennial flowering plants from the Lamiaceae family. Its application for the treatment of allergy, inflammatory, hyperlipidemia, arteriosclerosis, hypertension, and hepatitis has a long history.Evidence Acquisition:
Various studies on the chemical compounds of the Scutellaria genus have identified several compounds, especially essentials oils. The current review is based on the evidence found in Chemical Abstract, Science Direct, Scopus, PubMed, Web of Knowledge, and Google Scholar databases.Results:
Many studies on the chemical components of essential oils from the Scutellaria genus have identified several compounds. We summarized the chemical compositions and biological activities of Scutellaria essential oils. Hexadecanoic acid, germacrene D, β-caryophyllene, linalool, β-farnesene, and eugenol are the main compounds in essential oils of this genus. Despite many reports about essential oils of Scutellaria species (more than 38), a large number of species have not been studied yet. Therefore, several studies should be conducted on the chemical compounds and biological activities of unstudied Scutellaria essential oils.Conclusions:
This review has summarized reports on the chemistry and biological activities of Scutellaria essential oils, such as antioxidant, antimicrobial, antifeedant, phytotoxic, and acaricidal toxicities, based on the recent literature.Keywords
Scutellaria Lamiaceae Essential Oils Chemical Composition Biological Activities
1. Context
The Scutellaria genus that can be found in East Asia, the United States, and Europe include perennial flowering plants in the Lamiaceae (mint) family, which contains 350 species (1, 2). There are about 300 species of this genus in Asia (3-6). In Iran, the Scutellaria genus is represented by 27 species, which 12 of them are endemic (7). Scutellaria genus has been used for the treatment of hyperlipidemia, allergy, inflammatory, arteriosclerosis, hepatitis, and hypertension for hundreds of years (8). It’s about 2000 years that Asian medicine, especially Chinese medicine, is using Scutellaria for the treatment of fevers, colds, diphtheria, and high blood pressure (9). The genus of Scutellaria has several therapeutic properties such as antitumor, hepatoprotective, antioxidant, anti-inflammatory, anticonvulsant, antibacterial, and antiviruses activities (8). Also, Scutellaria species are useful in treating nervous system problems, including anxiety, insomnia, and hysteria (2). More than 295 compounds have been isolated from this genus (10, 11), such as flavonoids (12), phenylethanoid glycosides, and terpenes (Iridoid glycosides, monoterpenes, diterpenes, and triterpenoids) (13). Flavonoids (almost flavones) are common bioactive compounds of the Scutellaria genus (14).
Essential oils are secondary metabolites with versatile organic structures that have useful medicinal properties (15). They can be extracted from plants using classical and advanced techniques (16). There are various methods to extract essential oils, such as hydrodistillation, steam distillation, microwave, organic solvent extraction, supercritical CO2, and ultrasonic and high-pressure solvent extraction (17, 18). Various factors affect the compositions of the essential oils, including geographical and climatic conditions, harvesting time, physiological age, plant storages, extraction methods, kind of drying. Besides, it should be noted that various parts of the plant contain different compositions (19-22). The major essential oil compounds are terpenoids, which are classified as monoterpens, sesquiterpenes, diterpenes, triterpenes, and tetraterpenes (23, 24). Essential oils can defend the plant against predators, parasites, environmental stress, and diseases. Meanwhile, during the insects’ reproductive process, they attract insects (25).
2. Evidence Acquisition
The recent literature about the essential oils of different species of Scutellaria was reviewed (26-32). Although some review studies are conducted on the Scutellaria genus (8, 13) but evidence about the Scutellaria essential oils is not sufficient. Therefore this review was focused on the chemical compounds and biological activities of the Scutellaria genus essential oils.
3. Results
3.1. Chemical Compositions of Scutellaria Genus Essential Oils
Many studies have shown variations in the chemical compounds of Scutellaria genus essential oils. Several factors affect the variations in the essential oil compositions, including harvesting time, soil PH, drying conditions, geographic location, kind of subspecies, part of the plant, and extraction method (19-22).
The oils extracted from different Scutellaria species have similar compounds (Table 1). The compositions of essential oils are classified in Figures 1 to 4; the sesquiterpenes are the most common compound of the Scutellaria essential oils. Hexadecanoic acid, Germacrene D, β-caryophyllene, Linalool, β-Farnesene, and Eugenol are the main compounds of the essential oils of this genus. The structures of these compounds are shown in Figure 5. Several hydrocarbons and oxygenated terpenoid compounds have been identified from Scutellaria species (Figures 2 to 5). Hexadecanoic acid is a saturated fatty acid in plants, animals, and microorganisms (33). Germacrene D is a precursor of various sesquiterpenes such as cadinenes and selinenes (34, 35). Germacrene D has insecticidal activity against mosquitoes (36), aphids (37), and ticks (38). β-caryophyllene is a natural sesquiterpene with dietary phytocannabinoid that has therapeutic potential for anxiety, neuropathic pain, ulcerative colitis, endometriosis, and renal protection (39-42). Linalool is a monoterpene compound that is found in many plants; it is effective against several bacteria and fungi and possesses anti-inflammatory, antinociceptive, and antihyperalgesic activities (43). β-Farnesene is a strong pheromone in most aphid species (44).
Major Essential Oil Components (> 10%) of Scutellaria Species
Compound | Scutellaria species | Origin | Amount (%) | Ref. |
---|---|---|---|---|
Hexadecanoic acid | S. barbata | Korea | 58.52 | (45) |
S. albida subsp albida | Turkey | 15.6 | (46) | |
S. albida subsp colchica | Turkey | 12.9 | (46) | |
S. albida subsp velenovskyi | Turkey | 17.3 | (46) | |
S. brevibracteata | Lebanon | 12.6 | (47) | |
S. diffusa | Turkey | 29.9 | (48) | |
S. heterophylla | Turkey | 16.0 | (48) | |
S. barbata | China | 28.6 | (49) | |
Hydroxynaphthalene | S. barbata | Korea | 12.22 | (45) |
Germacrene D | S. volubilis | Ecuador | 20.4 | (50) |
S. baicalensis | United States | 12.4 | (51) | |
United States | 27.5 | (51) | ||
United States | 13.0 | (51) | ||
S. litwinowii | Iran | 16.9 | (52) | |
S. strigillosa | China | 37.78 | (53) | |
S. salviifolia | Turkey | 40.0 | (46) | |
S. laeteviolacea | Japan | 21.67 | (54) | |
S. orientalis subsp alpina | Iran | 39.7 | (55) | |
S. orientalis subsp Virens | Iran | 16.5 | (56) | |
S. ramosissima | Uzbekistan | 23.96 | (57) | |
S. sibthorpii | Turkey | 42.01 | (58) | |
S. heterophylla | Turkey | 21 | (46) | |
S. pinnatifida subsp alpina | Iran | 39.7 | (55) | |
β -Caryophyllene | S. volubilis | Ecuador | 17.5 | (50) |
S. baicalensis | US | 22.3 | (51) | |
S. baicalensis | US | 23.1 | (51) | |
S. baicalensis | US | 41.5 | (51) | |
S. californica | US | 56.6 | (51) | |
S. albida subsp albida | Turkey | 14.2 | (48) | |
S. albida subsp velenovskyi | Turkey | 20 | (48) | |
S. sieberi | Greece | 14.2 | (28) | |
S. salviifolia | Turkey | 11 | (46) | |
S. orientalis subsp alpina | Iran | 15 | (55) | |
S. orientalis subsp Virens | Iran | 13.4 | (56) | |
S. orientalis subsp Virens | Turkey | 22.08 | (59) | |
S. ramosissima | Uzbekistan | 11.09 | (57) | |
S. sibthorpii | Turkey | 22.58 | (58) | |
S. brevibracteata | Lebanon | 14.4 | (47) | |
S. hastifolia | Lithuania | 12.9 | (47) | |
S. hastifolia | Lithuania | 12.9 | (60) | |
S. galericulata | Canada | 29.4 | (61) | |
S. heterophylla | Turkey | 13.0 | (46) | |
S. pinnatifida subsp. alpina | Iran | 15.0 | (55) | |
S. rubicunda | Italy | 28.7 | (26) | |
S. luteo-caerulea | Iran | 24.8 | (62) | |
S. parvula | Canada | 29.4 | (61) | |
S. havanensis Jacq. | Cuba | 75.6 | (63) | |
α-Humulene | S. volubilis | Ecuador | 14.7 | (50) |
S. havanensis Jacq. | Cuba | 11.6 | (63) | |
Linalool | S. albida subsp albida | Turkey | 20.4 | (46) |
S. albida subsp condensata | Turkey | 28.5 | (46) | |
S. albida subsp albida | Greece | 52.6 | (27) | |
S. sieberi | Greece | 22.7 | (28) | |
S. rupestris | Greece | 38.8 | (28) | |
S. schachristanica | Uzbekistan | 26.98 | (57) | |
S. cypria var. elatior | Turkey | 10.92 | (58) | |
S. rubicunda | Italy | 27.8 | (26) | |
Nerolidol | S. albida subsp condensata | Turkey | 16.8 | (46) |
Tetradecanoic acid | S. albida subsp velenovskyi | Turkey | 10.2 | (46) |
Cadinene | S. lateriflora | Iran | 27.0 | (64) |
S. orientalis subsp virens | Turkey | 19.92 | (59) | |
Calamenene | S. lateriflora | Iran | 15.2 | (64) |
β-Farnesene | S. litwinowii | Iran | 20.3 | (52) |
S. galericulata | Canada | 17.0 | (61) | |
S. parvula | Canada | 17.0 | (61) | |
S.Wightiana benth | India | 22.07 | (13) | |
Bicyclo-germacrene | S. salviifolia | Turkey | 14.0 | (46) |
Hexahydro farnesyl acetone | S. orientalis subsp. alpina | Lebanon | 11.7 | (47) |
1-octen-3-ol | S. laeteviolacea | Japan | 27.72 | (54) |
S. grossa Wall ex Benth | India | 32.0 | (65) | |
Terpinolene | S. orientalis subsp Virens | Iran | 15.6 | (56) |
Acetophenone | S. immaculata | Uzbekistan | 30.39 | (57) |
S. schachristanica | Uzbekistan | 34.74 | (57) | |
Eugenol | S. immaculata | Uzbekistan | 20.61 | (57) |
S. schachristanica | Uzbekistan | 20.67 | (57) | |
S. cypria var cypria | Turkey | 23.05 | (58) | |
Thymol | S. immaculata | Uzbekistan | 10.04 | (57) |
Palmitic acid | S. cypria var cypria | Turkey | 27.0 | (57) |
S. cypria var elatior | Turkey | 46.76 | (57) | |
Phytol | S. brevibracteata | Lebanon | 10.7 | (47) |
4-vinylguaiacol | S. brevibracteata | Lebanon | 10.2 | (47) |
βisabolol | S. galericulata | Canada | 20.6 | (61) |
S. parvula | Canada | 20.6 | (61) | |
Bergamotene | S. galericulata | Canada | 13.4 | (61) |
S. parvula | Canada | 13.4 | (61) | |
Methyl chavicol | S. pinnatifida A. Hamilt Subsp pinnatifida | Iran | 81.9 | (66) |
Aromadendrene | S. repens | India | 30.7 | (67) |
β -Funebrene | S. repens | India | 15.0 | (67) |
1, 4- Benzenediol-2, 5-dimethyl | S.Wightiana benth | India | 21.53 | (13) |
Pipertone oxide | S.Wightiana benth | India | 16.23 | (13) |
α-Humulene | S. havanensis Jacq | Cuba | 11.6 | (63) |
Limonene | S. angustifolia | Laos | 30.3 | (68) |
Fenchone | S. angustifolia | Laos | 26.7 | (68) |
Alpha-pinene | S. angustifolia | Laos | 11.9 | (68) |
Relative abundance of sesquiterpene hydrocarbons in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albida subsp albida (47); 3: S. albida subsp colchica (47); 4: S. albida subsp condensata (47); 5: S. albida subsp velenovskyi (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baicalensis (Chinese Medicinal Plants) (52); 9: S. baicalensis (UC Berkeley Botanical Gardens) (52); 10: S. baicalensis (Horizon Herbs) (52); 11: S. brevibracteata (48); 12: S. californica (60); 13: S. cypria var. elatior (59); 14: S. cypria var. Cypria (59); 15: S. diffusa (49); 16: S. galericulata (63); 17: S. grossa Wall ex Benth (67); 18: S. hastifolia (48); 19: S. havanensis Jacq (65); 20: S. heterophylla (49); 21: S. immaculate (58); 22: S. orientalis L. subsp. Virens (61); 23: S. lateriflora (64); 24: S. litwinowii (53); 25: S. laeteviolacea (55); 26: S. luteo-caerulea (64); 27: S. orientalis ssp. alpina (48); 28: S. orientalis subsp. Virens (57); 29: S. pinnatifida ssp. alpina (56); 30: S. pinnatifida ssp. alpina (68); 31: S. parvula (63); 32: S. rupestris (28); 33: S. ramosissima (58); 34: S. rubicunda (26); 35: S. repens (67); 36: S. sieberi (28); 37: S. strigillosa (54); 38: S. schachristanica (58); 39: S. sibthorpii (59); 40: S. salviifolia (49); 41: S. volubilis (51); 42: S. Wightiana Beth (13).
Relative abundance of monoterpene hydrocarbons in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albida subsp albida (47); 3: S. albida subsp colchica (47); 4: S. albida subsp condensata (47); 5: S. albida subsp velenovskyi (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baicalensis (Chinese Medicinal Plants) (52); 9: S. baicalensis (UC Berkeley Botanical Gardens) (52); 10: S. baicalensis (Horizon Herbs) (52); 11: S. brevibracteata (48); 12: S. californica (60); 13: S. cypria var. elatior (59); 14: S. cypria var. Cypria (59); 15: S. diffusa (49); 16: S. galericulata (63); 17: S. grossa Wall ex Benth (67); 18: S. hastifolia (48); 19: S. havanensis Jacq (65); 20: S. heterophylla (49); 21: S. immaculate (58); 22: S. orientalis L. subsp. Virens (61); 23: S. lateriflora (64); 24: S. litwinowii (53); 25: S. laeteviolacea (55); 26: S. luteo-caerulea (64); 27: S. orientalis ssp. alpina (48); 28: S. orientalis subsp. Virens (57); 29: S. pinnatifida ssp. alpina (56); 30: S. pinnatifida ssp. alpina (68); 31: S. parvula (63); 32: S. rupestris (28); 33: S. ramosissima (58); 34: S. rubicunda (26); 35: S. repens (67); 36: S. sieberi (28); 37: S. strigillosa (54); 38: S. schachristanica (58); 39: S. sibthorpii (59); 40: S. salviifolia (49); 41: S. volubilis (51); 42: S. Wightiana Beth (13).
Relative abundance of oxygenated sesquiterpenes in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albida subsp albida (47); 3: S. albida subsp colchica (47); 4: S. albida subsp condensata (47); 5: S. albida subsp velenovskyi (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baicalensis (Chinese Medicinal Plants) (52); 9: S. baicalensis (UC Berkeley Botanical Gardens) (52); 10: S. baicalensis (Horizon Herbs) (52); 11: S. brevibracteata (48); 12: S. californica (60); 13: S. cypria var. elatior (59); 14: S. cypria var. Cypria (59); 15: S. diffusa (49); 16: S. galericulata (63); 17: S. grossa Wall ex Benth (67); 18: S. hastifolia (48); 19: S. havanensis Jacq (65); 20: S. heterophylla (49); 21: S. immaculate (58); 22: S. orientalis L. subsp. Virens (61); 23: S. lateriflora (64); 24: S. litwinowii (53); 25: S. laeteviolacea (55); 26: S. luteo-caerulea (64); 27: S. orientalis ssp. alpina (48); 28: S. orientalis subsp. Virens (57); 29: S. pinnatifida ssp. alpina (56); 30: S. pinnatifida ssp. alpina (68); 31: S. parvula (63); 32: S. rupestris (28); 33: S. ramosissima (58); 34: S. rubicunda (26); 35: S. repens (67); 36: S. sieberi (28); 37: S. strigillosa (54); 38: S. schachristanica (58); 39: S. sibthorpii (59); 40: S. salviifolia (49); 41: S. volubilis (51); 42: S. Wightiana Beth (13).
Relative abundance of oxygenated monoterpenes in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albida subsp albida (47); 3: S. albida subsp colchica (47); 4: S. albida subsp condensata (47); 5: S. albida subsp velenovskyi (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baicalensis (Chinese Medicinal Plants) (52); 9: S. baicalensis (UC Berkeley Botanical Gardens) (52); 10: S. baicalensis (Horizon Herbs) (52); 11: S. brevibracteata (48); 12: S. californica (60); 13: S. cypria var. elatior (59); 14: S. cypria var. Cypria (59); 15: S. diffusa (49); 16: S. galericulata (63); 17: S. grossa Wall ex Benth (67); 18: S. hastifolia (48); 19: S. havanensis Jacq (65); 20: S. heterophylla (49); 21: S. immaculate (58); 22: S. orientalis L. subsp. Virens (61); 23: S. lateriflora (64); 24: S. litwinowii (53); 25: S. laeteviolacea (55); 26: S. luteo-caerulea (64); 27: S. orientalis ssp. alpina (48); 28: S. orientalis subsp. Virens (57); 29: S. pinnatifida ssp. alpina (56); 30: S. pinnatifida ssp. alpina (68); 31: S. parvula (63); 32: S. rupestris (28); 33: S. ramosissima (58); 34: S. rubicunda (26); 35: S. repens (67); 36: S. sieberi (28); 37: S. strigillosa (54); 38: S. schachristanica (58); 39: S. sibthorpii (59); 40: S. salviifolia (49); 41: S. volubilis (51); 42: S. Wightiana Beth (13).
Chemical structures of the most frequent compounds from the essential oils of the Scutellaria genus
Despite the many reports about essential oils of Scutellaria species (more than 38), a large number of species have not been studied yet. Therefore, more studies on the chemical composition of unstudied Scutellaria essential oils are recommended.
3.2. Biological Activities of Scutellaria Essential Oils
3.2.1. Antioxidant Activity
Compared to the results on the antioxidant activity of Scutellaria extracts (70-72), the essential oils of Scutellaria species only have moderate antioxidant activity (57). Zokirjonovna et al. (2016) evaluated the antioxidant activity of essential oils of three Uzbek Scutellaria species (i.e., S. immaculata, S. ramosissima, and S. schachristanica). The Scutellaria essential oils of these species exhibited moderate antioxidant activity due to the presence of eugenol, thymol, and carvacrol, but it was weaker than ascorbic acid (57).
3.2.2. Antimicrobial Activity
There are reports on the biological activities of Scutellaria genus essential oils, and most of the studies have investigated the antimicrobial activity of essential oils from this genus. The antimicrobial activity of these oils could be due to the components such as linalool, eugenol, and other long-chain alcohols (73). Moreover, other compounds such as thymol and alpha-terpineol could also contribute to the antimicrobial activity of the essential oil (74, 75). Yu et al. (2004) investigated the antibacterial activities of S. barbata essential oils against 17 microorganisms (Enterococcus faecalis, Staphylococcus aureus, Serratia marcescens, Escherichia coli, Stenotrophomonas maltophila, Pseudomonas aeruginosa, Staphylococcus heamolyticus, Staphylococcus epidermidis, Candida tropicalis, Staphylococcus simulans, Citrobacter freundii, Salmonella paratyphi-A, Shigella flexneri, Klebsiella pneumoniae, Salmonella typhi, Serratia liquefaciens, and Candida albicans) using the disc diffusion and broth microdilution methods. According to their results, the essential oil demonstrated a strong bactericidal effect; S. epidermidis was the most sensitive microorganism (29 mm inhibition zone and 0.77 mg/mL MBC), and C. albicans was the most resistant to the extract (7 - 9 mm and 24.50 mg/mL MBC) (69). Based on the results reported by Zhu et al. (2016), the essential oils from S. strigillosa had higher antimicrobial effects on gram-positive bacteria than gram-negative bacteria and fungus (53). Another study by Pant et al. (2012) demonstrated that the essential oils of S. grossa had significant antibacterial activity against B. subtilis, E. faecalis, K. pneumonia, and S. enterica (65). Skaltsa (2005) reported a moderate activity against S. aureus and B. cereus for the essential oils of S. rupestris and S. sieberi that were collected from Greece (28). In a study by Skaltsa et al. (2000), it was revealed that the essential oil of S. albida subsp albida was moderately active against E. coli, S. aureus, B. subtilis, P. aeruginosa, and S. cerevisiae, which can be attributed to high levels of linalool and nerolidol content (27). Dereboylu et al. (2012) investigated the antimicrobial activities of the volatile compounds of S. sibthorpii, S. cypria var. cypria, and S. cypria var. elatior against 7 bacteria and one fungis (S. aureus, B. subtilis, S. typhimurium, E. faecalis, E. coli, P. aeruginosa, K. pneumonia, and C. albicans) and reported that S. aureus was the most sensitive microorganism (58). The antibacterial activity of S. repens essential oil was tested on S. aureus, E. faecalis, A. tumefac iens, E. chrysanthemi, X. phaseoli, E. coli, S. enterica, K. pneumoniae, and P. multocida (67), and according to the results, the essential oil showed a high level of antibacterial activity. The maximum zone of inhibition was 23 mm for E. coli, 18 mm for E. faecalis, 15 mm for K. pneumonia, and 12 mm for B. subtilis (67). The antimicrobial activities of Scutellaria essential oils are summarized in Table 2.
Antibacterial and Antifungal Activities of Scutellaria Species
Microorganism | Scutellaria Species | ||||||||
---|---|---|---|---|---|---|---|---|---|
S. barbata | S. strigillosa | S. grossa | S. rupestris ssp. adenotricha | S. sieberi | S. albida ssp. albida | S. cypria var. cypria | S. sibthorpis | S. repens | |
S. aureus | √ | √ | -a | √ | √ | √ | √ | √ | √ |
E. coli | √ | √ | - | - | - | √ | √ | √ | √ |
P. aeruginosa | √ | √ | - | - | - | √ | √ | - | - |
S. epidermidis | √ | - | - | - | - | - | - | - | - |
S. heamolyticus | √ | - | - | - | - | - | - | - | - |
S. simulans | √ | - | - | - | - | - | - | - | - |
E. faecalis | √ | - | √ | - | - | - | √ | - | √ |
C. freundii | √ | - | - | - | - | - | - | - | - |
K. pneumoniae | √ | - | √ | - | - | - | √ | √ | √ |
S. flexneri | √ | - | - | - | - | - | - | - | - |
S. paratyphi | - | - | - | - | - | - | - | - | - |
S. liquefaciens | √ | - | - | - | - | - | - | - | - |
S. marcescens | √ | - | - | - | - | - | - | - | - |
S. maltophilia | √ | - | - | - | - | - | - | - | - |
C. albicans | √ | √ | - | - | - | - | - | - | - |
C. tropicalis | √ | - | - | - | - | - | - | - | - |
B. subtilis | - | √ | √ | - | - | - | √ | √ | √ |
S. cerevisiae | - | √ | - | - | - | √ | - | - | - |
S.enterica | - | - | √ | - | - | - | - | - | √ |
B. cereus | - | - | - | √ | √ | √ | - | - | - |
M. flavus | - | - | - | - | - | - | - | - | - |
P. mirabilis | - | - | - | - | - | - | - | - | - |
S. thyphimirium | - | - | - | - | - | - | √ | √ | - |
X. phaseoli | - | - | - | - | - | - | - | - | √ |
E.chrysanthemi | - | - | - | - | - | - | - | - | √ |
A.tumefaciens | - | - | - | - | - | - | - | - | √ |
P. multocida | - | - | - | - | - | - | - | - | √ |
3.2.3. Antifeedant Activity
In the study performed by Formisano et al. (2013), the essential oils of three Scutellaria species (S. brevibracteata, S. hastifolia and S. orientalis ssp. alpina) are studied against the feeding and egg-laying behavior of Spodoptera littoralis. The results of the insect assays showed that the essential oil of S. hastifolia was the only oil that could deter Spodoptera littoralis larvae from feeding on treated discs, whereas both S. brevibracteata and S. hastifolia could deter female moths from laying eggs on papers treated with their extracts (47). In another study, Rosselli et al. (2007) reported that essential oil of S. rubicunda subsp. linnaeana has antifeedant activity against Spodoptera littoralis (26). In their study, the essential oil of plant stimulated a dose-dependent positive feeding response from larvae of S. littoralis (feeding index (FI) 50% = 925 ppm; FI at 100 ppm = 44.85). A study on S. rubicunda subsp. linnaeana revealed that aerial parts of the plant that contains scutecyprol B, scutalbin C, and scutecyprol B had antifeedant activity against larvae of five species of Lepidoptera (FI at 100 ppm = 100) (1).
3.2.4. Phytotoxic Effect
The phytotoxic effect of S. strigillosa essential oil was evaluated by conducting bioassays against amaranth and bluegrass (amaranthus is a cosmopolitan genus of annual or short-lived perennial plants, and bluegrass refers to several species of grasses of the genus Poa). 3 μL/mL of essential oil could completely inhibit amaranthus seedling growth and caused a significant inhibitory effect on bluegrass (53).
3.2.5. Acaricidal Toxicities Activity
The acaricidal activity of S. barbata essential oil was higher than the activity observed in the positive controls (benzyl benzoate), which was evaluated via fumigant and contact toxicity bioassays against Dermatophagoides farinae, D. pteronyssinus, and Tyrophagus putrescentiae (45).
4. Conclusions
Scutellaria is a genus in the Lamiaceae family and for thousands of years, has been used as a medicine (76, 77). In recent years, many studies are performed on the essential oils of different species of Scutellaria (8, 13, 26-32). However, many species of the Scutellaria genus are not investigated, and therefore many studies can be performed on the components and biological activities of uninvestigated Scutellaria essential oils.
In the current review, chemical compositions of essential oils and biological activities (antioxidant, antimicrobial, antifeedant, phytotoxic, and acaricidal activities) of the Scutellaria genus are summarized. Hexadecanoic acid, germacrene D, β-caryophyllene, linalool, β-farnesene, and eugenol were the main compounds. (several compounds of these oils have medicinal properties). This review can serve as a reference for natural products and ethnopharmacology fields.
References
-
1.
Bruno M, Piozzi F, Maggio AM, Simmonds MS. Antifeedant activity of neoclerodane diterpenoids from two Sicilian species of Scutellaria. Biochem Sys Ecol. 2002;30(8):793-9. https://doi.org/10.1016/s0305-1978(01)00143-0.
-
2.
Cole IB, Saxena PK, Murch SJ. Medicinal biotechnology in the genus scutellaria. In Vitro Cel Dev Biol Plant. 2007;43(4):318-27. https://doi.org/10.1007/s11627-007-9055-4.
-
3.
Rechinger KH. Scutellaria L. In: Rechinger KH, editor. Flora Iranica. 150. Graz: Akademische Druck-u.-Verlagsanstalt; 1982. p. 44-84.
-
4.
Tatsu-Nami-So Z. Scutellaria L. In: Ohwi J, editor. Flora of Japan. Washington DC: Smithsonian Institution; 1984. p. 770-2.
-
5.
Huang QS. Scutellaria L. In: Li XW, Hedge IC, editors. Flora of China. 17. Missouri Botanical Garden Press; 1994. p. 75-103.
-
6.
Edmondson JR. Scutellaria. In: Davis PH, editor. Flora of Turkey and the East Aegean Islands. 7. Edinburgh: University Press; 1982. p. 78-100.
-
7.
Jamzad Z. A survey of Lamiaceae in the flora of Iran. Rostaniha. 2013;14(1):59-67.
-
8.
Shang X, He X, He X, Li M, Zhang R, Fan P, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2010;128(2):279-313. [PubMed ID: 20064593]. https://doi.org/10.1016/j.jep.2010.01.006.
-
9.
Phyllis A. Prescription for Herbal Healing. United States of America. 2002:122-3.
-
10.
Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, et al. Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol Pharm Bull. 2011;34(2):253-9. [PubMed ID: 21415537]. https://doi.org/10.1248/bpb.34.253.
-
11.
Bothmer R. Differentiation patterns in the Scutellaria albida group (Lamiaceae) in the Aegean area. Nordic J Botany. 2008;5(5):421-39. https://doi.org/10.1111/j.1756-1051.1985.tb01672.x.
-
12.
Boozari M, Mohammadi A, Asili J, Emami SA, Tayarani-Najaran Z. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines. Environ Toxicol Pharmacol. 2015;39(1):307-12. [PubMed ID: 25546119]. https://doi.org/10.1016/j.etap.2014.12.002.
-
13.
Sripathi R, Ravi S. Ethnopharmacology, Phytoconstituents, Essential Oil Composition and Biological Activities of the genus Scutellaria. J Pharm Sci Res. 2017;9(3):275-87.
-
14.
Nishikawa K, Furukawa H, Fujioka T, Fujii H, Mihashi K, Shimomura K, et al. Flavone production in transformed root cultures of Scutellaria baicalensis Georgi. Phytochemistry. 1999;52(5):885-90. https://doi.org/10.1016/s0031-9422(99)00306-4.
-
15.
Mohammadhosseini M, Nekoei M. Chemical Compositions of the Essential Oils and Volatile Compounds from the Aerial Parts ofFerula ovinaUsing Hydrodistillation, MAHD, SFME and HS-SPME Methods. J Essent Oil Bear Plants. 2014;17(5):747-57. https://doi.org/10.1080/0972060x.2014.884951.
-
16.
Mohammadhosseini M. Essential Oils Extracted Using Microwave-Assisted Hydrodistillation from Aerial Parts of Eleven Artemisia Species: Chemical Compositions and Diversities in Different Geographical Regions of Iran. Rec Nat Prod. 2017;11(2):114-29.
-
17.
Okoh OO, Sadimenko AP, Afolayan AJ. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010;120(1):308-12. https://doi.org/10.1016/j.foodchem.2009.09.084.
-
18.
Mohammadhosseini M, Mahdavi B, Akhlaghi H. Characterization and Chemical Composition of the Volatile Oils from Aerial Parts of Eryngium bungei Bioss. (Apiaceae) by Using Traditional Hydrodistillation, Microwave Assisted Hydrodistillation and Head Space Solid Phase Microextraction Methods Prior to GC and GC/MS Analyses: A Comparative Approach. J Essent Oil Bear Plants. 2013;16(5):613-23. https://doi.org/10.1080/0972060x.2013.854484.
-
19.
Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crop Prod. 2014;62:250-64. https://doi.org/10.1016/j.indcrop.2014.05.055.
-
20.
Mohammadhosseini M. Chemical Composition of the Essential Oils and Volatile Fractions from Flowers, Stems and Roots ofSalvia multicaulisVahl. by Using MAHD, SFME and HS-SPME Methods. J Essent Oil Bear Plants. 2015;18(6):1360-71. https://doi.org/10.1080/0972060x.2015.1024447.
-
21.
Mohammadhosseini M. Chemical Composition of the Volatile Fractions from Flowers, Leaves and Stems of Salvia mirzayaniiby HS-SPME-GC-MS. J Essent Oil Bear Plants. 2015;18(2):464-76. https://doi.org/10.1080/0972060x.2014.1001185.
-
22.
Nekoei M, Mohammadhosseini M. Chemical Compositions of the Essential Oils from the Aerial Parts of Achillea wilhelmsii Using Traditional Hydrodistillation, Microwave Assisted Hydro- distillation and Solvent-Free Microwave Extraction Methods: Comparison with the Volatile Compounds Obtained by Headspace Solid-Phase Microextraction. J Essent Oil Bear Plants. 2016;19(1):59-75. https://doi.org/10.1080/0972060x.2014.890077.
-
23.
Benchaar C, Chaves AV, Fraser GR, Beauchemin KA, McAllister TA. Effects of essential oils and their components on in vitro rumen microbial fermentation. Canadian J Anim Sci. 2007;87(3):413-9. https://doi.org/10.4141/cjas07012.
-
24.
Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol. 2012;176(1-4):78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010.
-
25.
Jouany JP, Morgavi DP. Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007;1(10):1443-66. [PubMed ID: 22444918]. https://doi.org/10.1017/S1751731107000742.
-
26.
Rosselli S, Bruno M, Simmonds MSJ, Senatore F, Rigano D, Formisano C. Volatile constituents of Scutellaria rubicunda Hornem subsp. linnaeana (Caruel) Rech. (Lamiaceae) endemic in Sicily. Biochem Sys Ecol. 2007;35(11):797-800. https://doi.org/10.1016/j.bse.2007.03.021.
-
27.
Skaltsa HD, Lazari DM, Mavromati AS, Tiligada EA, Constantinidis TA. Composition and antimicrobial activity of the essential oil of Scutellaria albida ssp. albida from Greece. Planta Med. 2000;66(7):672-4. [PubMed ID: 11105581]. https://doi.org/10.1055/s-2000-8650.
-
28.
Skaltsa HD, Lazari DM, Kyriazopoulos P, Golegou S, Triantaphyllidis S, Sokovic M, et al. Composition and Antimicrobial Activity of the Essential Oils of Scutellaria sieberia Benth. and Scutellaria rupestris Boiss. et Heldr. ssp.adenotricha(Boiss. et Heldr.) Greuter et Burdet from Greece. J Essent Oil Res. 2005;17(2):232-5. https://doi.org/10.1080/10412905.2005.9698886.
-
29.
Formisano C, Rigano D, Senatore F, Piozzi F, Arnold NA. Analysis of Essential Oils from Scutellaria orientalis ssp. alpina and S. utriculata by GC and GC-MS. Nat Prod Commun. 2011;6(9):1934578X1100600. https://doi.org/10.1177/1934578x1100600932.
-
30.
Maria C, Buta E, Adrian Z. Scutellaria genus possibilities for use of species as floral and medicinal crop. J Plant Develop. 2009;16:55-9.
-
31.
Minareci E, Pekönür S. An Important Euroasian Genus: Scutellaria L. Int J Sec Metabolite. 2017;4(1):35-46.
-
32.
Gill LS. Cytotaxonomy of the Genus Scutellaria L. (Labiatae) in Canada. Caryologia. 1980;33(3):339-46. https://doi.org/10.1080/00087114.1980.10796848.
-
33.
Rustan AC, Drevon CA. Fatty Acids: Structures and Properties. Encyclopedia of life sciences. New York, USA: John Wiley & Sons, Ltd; 2005. https://doi.org/10.1038/npg.els.0003894.
-
34.
Bülow N, König WA. The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry. 2000;55(2):141-68. https://doi.org/10.1016/s0031-9422(00)00266-1.
-
35.
Telascrea M, de Araújo CC, Marques MO, Facanali R, de Moraes PL, Cavalheiro AJ. Essential oil from leaves of Cryptocarya mandioccana Meisner (Lauraceae): Composition and intraspecific chemical variability. Biochem Sys Ecol. 2007;35(4):222-32. https://doi.org/10.1016/j.bse.2006.09.015.
-
36.
Kiran SR, Devi PS. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol Res. 2007;101(2):413-8. [PubMed ID: 17520288]. https://doi.org/10.1007/s00436-007-0485-z.
-
37.
Bruce TJ, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B, et al. Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag Sci. 2005;61(11):1115-21. [PubMed ID: 16059962]. https://doi.org/10.1002/ps.1102.
-
38.
Birkett MA, Abassi SA, Krober T, Chamberlain K, Hooper AM, Guerin PM, et al. Antiectoparasitic activity of the gum resin, gum haggar, from the East African plant, Commiphora holtziana. Phytochemistry. 2008;69(8):1710-5. [PubMed ID: 18402993]. https://doi.org/10.1016/j.phytochem.2008.02.017.
-
39.
Ou MC, Hsu TF, Lai AC, Lin YT, Lin CC. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: a randomized, double-blind clinical trial. J Obstet Gynaecol Res. 2012;38(5):817-22. [PubMed ID: 22435409]. https://doi.org/10.1111/j.1447-0756.2011.01802.x.
-
40.
Chen Y, Zhao YY, Wang XY, Liu JT, Huang LQ, Peng CS. [GC-MS analysis and analgesic activity of essential oil from fresh rhizoma of Cyperus rotundus]. Zhong Yao Cai. 2011;34(8):1225-9. Chinese. [PubMed ID: 22233038].
-
41.
Mishra D, Bisht G, Mazumdar PM, Sah SP. Chemical composition and analgesic activity of Senecio rufinervis essential oil. Pharm Biol. 2010;48(11):1297-301. [PubMed ID: 20738214]. https://doi.org/10.3109/13880209.2010.491083.
-
42.
Golshani S, Karamkhani F, Monsef-Esfehani HR, Abdollahi M. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharm Sci. 2004;7(1):76-9.
-
43.
Peana AT, Moretti MDL. Linalool in essential plant oils: pharmacological effects. Botanical Med Clinical Pract. 2008;79:716-24. https://doi.org/10.1079/9781845934132.0716.
-
44.
Sun Y, Qiao H, Ling Y, Yang S, Rui C, Pelosi P, et al. New analogues of (E)-beta-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins. J Agric Food Chem. 2011;59(6):2456-61. [PubMed ID: 21341697]. https://doi.org/10.1021/jf104712c.
-
45.
Yang JY, Kim MG, Lee HS. Acaricidal toxicities of 1-hydroxynaphthalene from Scutellaria barbata and its derivatives against house dust and storage mites. Planta Med. 2013;79(11):946-51. [PubMed ID: 23757178]. https://doi.org/10.1055/s-0032-1328631.
-
46.
Cicek M, Demirci B, Yilmaz G, Ketenoglu O, Baser KC. Composition of the Essential Oils of Subspecies ofScutellaria albidaL. From Turkey. J Essent Oil Res. 2010;22(1):55-8. https://doi.org/10.1080/10412905.2010.9700265.
-
47.
Formisano C, Rigano D, Senatore F, Arnold NA, Simmonds MS, Rosselli S, et al. Essential oils of three species of Scutellaria and their influence on Spodoptera littoralis. Biochem Sys Ecol. 2013;48:206-10. https://doi.org/10.1016/j.bse.2012.12.008.
-
48.
Cicek M, Demirci B, Yilmaz G, Baser KH. Essential oil composition of three species of Scutellaria from Turkey. Nat Prod Res. 2011;25(18):1720-6. [PubMed ID: 21714762]. https://doi.org/10.1080/14786419.2010.512997.
-
49.
Pan R, Guo F, Lu H, Feng WW, Liang YZ. Development of the chromatographic fi ngerprint of Scutellaria barbata D. Don by GC-MS combined with Chemometrics methods. J Pharm Biomed Anal. 2011;55(3):391-6. [PubMed ID: 21354741]. https://doi.org/10.1016/j.jpba.2011.01.016.
-
50.
Valarezo E, Castillo A, Guaya D, Morocho V, Malagón O. Chemical composition of essential oils of two species of the Lamiaceae family:Scutellaria volubilisandLepechinia paniculatafrom Loja, Ecuador. J Essent Oil Res. 2012;24(1):31-7. https://doi.org/10.1080/10412905.2012.645638.
-
51.
Takeoka GR, Rodriguez DM, Dao L, Patterson R. Headspace Volatiles of Scutellaria baicalensis Georgi Flowers. J Essent Oil Bear Plants. 2009;12(4):435-42. https://doi.org/10.1080/0972060x.2009.10643741.
-
52.
Firouznia A, Rustaiyana A, Masoudi S, Rahimizade M, Bigdeli M, Tabatabaei-Anaraki M. Volatile Constituents of Salvia limbata, Stachys turcomanica, Scutellaria litwinowii and Hymenocrater elegans Four Lamiaceae Herbs from Iran. J Essent Oil Bear Plants. 2009;12(4):482-9. https://doi.org/10.1080/0972060x.2009.10643748.
-
53.
Zhu X, Han C, Gao T, Shao H. Chemical Composition, Phytotoxic and Antimicrobial Activities of the Essential Oil of Scutellaria strigillosa Hemsley. J Essent Oil Bear Plants. 2016;19(3):664-70. https://doi.org/10.1080/0972060x.2014.1000389.
-
54.
Miyazawa M, Nomura M, Marumoto S, Mori K. Characteristic odor components of essential oil from Scutellaria laeteviolacea. J Oleo Sci. 2013;62(1):51-6. [PubMed ID: 23357818]. https://doi.org/10.5650/jos.62.51.
-
55.
Ghannadi A, Mehregan I. Essential oil of one of the Iranian skullcaps. Z Naturforsch C J Biosci. 2003;58(5-6):316-8. [PubMed ID: 12872921]. https://doi.org/10.1515/znc-2003-5-604.
-
56.
Delnavazi M, Baba-Ali F, Soufiabadi S, Sherafatmand M, Ghahremani F, Tavakoli S, et al. Essential oil composition, antioxidant activity and total phenolic content of some Lamiaceae taxa growing in Northwest of Iran. Pharm Sci. 2014;20(1):22-8.
-
57.
Mamadalieva NZ, Sharopov F, Satyal P, Azimova SS, Wink M. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities. Nat Prod Res. 2017;31(10):1172-6. [PubMed ID: 27545726]. https://doi.org/10.1080/14786419.2016.1222383.
-
58.
Dereboylu AE, Sarikahya NB, Sengonca NEDRET, Kirmizigul S, Yasa I, Gucel S, et al. Glandular trichomes morphology, chemical composition and antimicrobial activity of the essential oil of three endemic Scutellaria taxa (Lamiaceae). Asian J Chem. 2012;24(11):4911.
-
59.
Sina İçen M, Arabacı T, Köstekci S, Gürhan İ. Chemical Composition of the Essential Oil of Scutellaria orientalis L. subsp. virens (Boiss. Kotschy) J. R. Edm. from Turkey. Hacettepe J Biol Chem. 2016;1(44):25. https://doi.org/10.15671/hjbc.20164417563.
-
60.
Piozzi F, Bruno M, Rosselli S, Loziene K, Simmonds MSJ. Volatile components and antifeedant activity of the essential oil from Scutellaria hastifolia L. Planta Med. 2009;75(9). https://doi.org/10.1055/s-0029-1234350.
-
61.
Lawrence BM, Hogg JW, Terhune SJ, Morton JK, Gill LS. Terpenoid composition of some Canadian Labiatae. Phytochemistry. 1972;11(8):2636-8. https://doi.org/10.1016/s0031-9422(00)88570-2.
-
62.
Nikbin M, Kazemipour N, Maghsoodlou MT, Valizadeh J, Sepehrimanesh M, Davarimanesh A. Mineral elements and essential oil contents of Scutellaria luteo-caerulea Bornm. & Snit. Avicenna J Phytomed. 2014;4(3):182-90. [PubMed ID: 25050316]. [PubMed Central ID: PMC4104630].
-
63.
Marrero Delange D, Morales Rico CL, Canavaciolo VG, Rodríguez Leyes EA, Pérez RS. Volatile Constituents from Leaves of Endemic Scutellaria havanensis Jacq. in Cuba. J Essent Oil Bear Plants. 2013;16(3):368-71. https://doi.org/10.1080/0972060x.2013.794045.
-
64.
Yaghmai MS. Volatile constituents ofScutellaria lateriflora L. Flavour Fragrance J. 1988;3(1):27-31. https://doi.org/10.1002/ffj.2730030106.
-
65.
Pant CC, Melkani AB, Mohan L, Dev V. Composition and antibacterial activity of essential oil from Scutellaria grossa Wall ex Benth. Nat Prod Res. 2012;26(2):190-2. [PubMed ID: 22060314]. https://doi.org/10.1080/14786419.2011.585464.
-
66.
Masoudi S, Azad L, Arabshahi B, Yari M, Jamzad M, Akhlaghi H, et al. Volatile Constituents of Micromeria persica Boiss., Hymenocrater platystegius Rech. f. and Scutellaria pinnatifidaA. Hamilt. subsp. pinnatifida, Three Labiatae Herbs Growing Wild in Iran. J Essent Oil Res. 2009;21(6):515-8. https://doi.org/10.1080/10412905.2009.9700232.
-
67.
Melkani AB, Nailwal M, Mohan L, Pant CC, Dev V. Steam volatile oil from Scutellaria repens Buch-Ham. ex D. Don; its composition and antibacterial activity. J Essent Oil Res. 2013;25(5):368-71. https://doi.org/10.1080/10412905.2013.782474.
-
68.
Andersson K. Mosquito repellency of essential oils derived from Lao plants [dissertation]. Uppsala University; 2010.
-
69.
Yu J, Lei J, Yu H, Cai X, Zou G. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry. 2004;65(7):881-4. [PubMed ID: 15081288]. https://doi.org/10.1016/j.phytochem.2004.02.005.
-
70.
Golmakani E, Mohammadi A, Ahmadzadeh Sani T, Kamali H. Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. f. J Supercrit Fluids. 2014;95:318-24. https://doi.org/10.1016/j.supflu.2014.09.020.
-
71.
Su Y, Leung LK, Bi Y, Huang Y, Chen Z. Antioxidant activity of flavonoids isolated fromScutellaria rehderiana. J Am Oil Chem Soc. 2000;77(8):807-13. https://doi.org/10.1007/s11746-000-0129-y.
-
72.
Madani Mousavi SN, Delazar A, Nazemiyeh H, Khodaie L. Biological Activity and Phytochemical Study of Scutellaria platystegia. Iran J Pharm Res. 2015;14(1):215-23. [PubMed ID: 25561927]. [PubMed Central ID: PMC4277634].
-
73.
Pattnaik S, Subramanyam VR, Bapaji M, Kole CR. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios. 1997;89(358):39-46. [PubMed ID: 9218354].
-
74.
Cosentino S, Tuberoso CI, Pisano B, Satta M, Mascia V, Arzedi E, et al. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol. 1999;29(2):130-5. [PubMed ID: 10499301]. https://doi.org/10.1046/j.1472-765x.1999.00605.x.
-
75.
Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J Appl Bacteriol. 1995;78(3):264-9. [PubMed ID: 7730203]. https://doi.org/10.1111/j.1365-2672.1995.tb05025.x.
-
76.
Melkani AB, Negi A, Bisht CMS, Vasu D. Constituents of the essential oil from Scutellaria scandens D. Don Indian Perfumer. 2007;51(2):37-9.
-
77.
Gousiadou C, Karioti A, Heilmann J, Skaltsa H. Iridoids from Scutellaria albida ssp. albida. Phytochemistry. 2007;68(13):1799-804. [PubMed ID: 17532352]. https://doi.org/10.1016/j.phytochem.2007.04.014.