Effects of sesamol on behavioral responses of neuropathic pain and the expression of interleukins 6 and 10 in the damaged sciatic nerve of rats

authors:

avatar Nastaran Amerian , avatar Athar Talebi , avatar Mahboubeh Mousavi , avatar Ali Ghanbari , avatar Hossein ali Safakhah , avatar Sam Zarbakhsh ORCID , *


How To Cite Amerian N, Talebi A, Mousavi M, Ghanbari A, Safakhah H A, et al. Effects of sesamol on behavioral responses of neuropathic pain and the expression of interleukins 6 and 10 in the damaged sciatic nerve of rats. koomesh. 2021;23(6):e153315. 

Abstract

Introduction: Peripheral nerve damage is a clinical problem that causes sensory and motor disabilities. Sesamol is an antioxidant that can be effective in repairing various organs. The aim of this study was to evaluate the effect of different doses of sesamol on inflammation and pain in the damaged rat sciatic nerve. Materials and Methods: In this study, 35 adult male Wistar rats were used. The rats were randomly divided into five groups: The sham group without crush injury, the control group and three experimental groups respectively received DMSO (solvent) and doses of 50, 100, or 200 mg/kg sesamol intraperitoneally for 28 days after sciatic nerve injury. Then behavioral pain tests including mechanical allodynia and thermal hyperalgesia as well as inflammatory factors including interleukins 6 and 10 in the sciatic nerve were evaluated. Results: The results showed that administration of 50 and 100 mg/kg of sesamol significantly decreased expression of interleukin 6, and increased expression of interleukin 10, the retraction threshold in the mechanical allodynia test and the response time to thermal pain in the thermal hyperalgesia test in the damaged sciatic nerve than the control group (P

References

  • 1.

    Zhou G, Chang W, Zhou X, Chen Y, Dai F, Anwar A, Yu X. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration. ACS Appl Mater Interfaces 2020; 12: 16168-16177. https://doi.org/10.1021/acsami.0c04191 PMid:32182427.

  • 2.

    Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys 2014; 68: 449-454. https://doi.org/10.1007/s12013-013-9742-1 PMid:24037713.

  • 3.

    Kubo T, Randolph MA, Groger A, Winograd JM. Embryonic stem cell-derived motor neurons form neuromuscular junctions in vitro and enhance motor functional recovery in vivo. Plast Reconstr Surg 2009; 123: 139S-148S. https://doi.org/10.1097/PRS.0b013e3181923d07 PMid:19182673.

  • 4.

    Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T. Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. Biomed Res Int 2016; 2016: 3856262. https://doi.org/10.1155/2016/3856262 PMid:27556032 PMCid:PMC4983313.

  • 5.

    Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics 2016; 13: 295-310. https://doi.org/10.1007/s13311-015-0415-1 PMid:26754579 PMCid:PMC4824030.

  • 6.

    Wu P, Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell 2019; 32: 251-259. https://doi.org/10.1007/s13577-019-00238-4 PMid:30701373.

  • 7.

    Sameni HR, Javadinia SS, Safari M, Tabrizi Amjad MH, Khanmohammadi N, Parsaie H, Zarbakhsh S. Effect of quercetin on the number of blastomeres, zona pellucida thickness, and hatching rate of mouse embryos exposed to actinomycin D: An experimental study. Int J Reprod Biomed (Yazd) 2018; 16: 101-108. (Persian). https://doi.org/10.29252/ijrm.16.2.101.

  • 8.

    Zarbakhsh S, Safari R, Sameni HR, Yousefi B, Safari M, Khanmohammadi N, Hayat P. Effects of Co-Administration of bone marrow stromal cells and L-Carnitine on the recovery of damaged ovaries by performing chemotherapy model in rat. Int J Fertil Steril 2019; 13: 196-202.

  • 9.

    Safari M, Parsaie H, Sameni HR, Aldaghi MR, Zarbakhsh S. Anti-oxidative and anti-apoptotic effects of apigenin on number of viable and apoptotic blastomeres, zona pellucida thickness and hatching rate of mouse embryos. Int J Fertil Steril 2018; 12: 257-262.

  • 10.

    Guo TZ, Wei T, Huang TT, Kingery WS, Clark JD. Oxidative stress contributes to fracture/cast-induced inflammation and pain in a rat model of complex regional pain syndrome. J Pain 2018; 19: 1147-1156. https://doi.org/10.1016/j.jpain.2018.04.006 PMid:29715519 PMCid:PMC6163064.

  • 11.

    Zhang X, Guan Z, Wang X, Sun D, Wang D, Li Y, et al. Curcumin alleviates oxaliplatin-induced peripheral neuropathic pain through inhibiting oxidative stress-mediated activation of NF-kappaB and mitigating inflammation. Biol Pharm Bull 2020; 43: 348-355. https://doi.org/10.1248/bpb.b19-00862 PMid:31776306.

  • 12.

    Renno WM, Benov L, Khan KM. Possible role of antioxidative capacity of (-)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. J Neurosurg Spine 2017; 27: 593-613. https://doi.org/10.3171/2016.10.SPINE16218 PMid:28777065.

  • 13.

    Wang W, Huang CY, Tsai FJ, Tsai CC, Yao CH, Chen YS. Growth-promoting effects of quercetin on peripheral nerves in rats. Int J Artif Organs 2011; 34: 1095-1105. https://doi.org/10.5301/ijao.5000064 PMid:22183523.

  • 14.

    Geetha T, Rohit B, Pal KI. Sesamol: an efficient antioxidant with potential therapeutic benefits. Med Chem 2009; 5: 367-371. https://doi.org/10.2174/157340609788681476 PMid:19689394.

  • 15.

    Cigsar EB, Karadag CA, Tanik C, Aydin AF, Dokucu AI. The protective effects of sesamol in a neonatal rat model of necrotizing enterocolitis. J Matern Fetal Neonatal Med 2020; 33: 889-894. https://doi.org/10.1080/14767058.2018.1506759 PMid:30058400.

  • 16.

    Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med 2017; 14: 841-847. https://doi.org/10.3892/etm.2017.4550 PMid:28673008 PMCid:PMC5488678.

  • 17.

    Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 2010; 11: 950-957. https://doi.org/10.1016/j.jpain.2010.01.006 PMid:20418182.

  • 18.

    Cheng FC, Jinn TR, Hou RC, Tzen JT. Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int J Biomed Sci 2006; 2: 284-288.

  • 19.

    Hong BY, Kim JS, Lee KB, Lim SH. The effect of sesamol on rats with ischemic stroke. J Phys Ther Sci 2015; 27: 1771-1773. https://doi.org/10.1589/jpts.27.1771 PMid:26180317 PMCid:PMC4499980.

  • 20.

    Hassanzadeh P, Hassanzadeh A. Implication of NGF and endocannabinoid signaling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology (Berl) 2013; 229: 571-578. https://doi.org/10.1007/s00213-013-3111-z PMid:23624775.

  • 21.

    Liu Z, Sun Y, Qiao Q, Zhao T, Zhang W, Ren B, et al. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system. Food Funct 2017; 8: 710-719. https://doi.org/10.1039/C6FO01562J PMid:28102395.

  • 22.

    VanGilder RL, Kelly KA, Chua MD, Ptachcinski RL, Huber JD. Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats. Exp Brain Res 2009; 197: 23-34. https://doi.org/10.1007/s00221-009-1866-6 PMid:19565232.

  • 23.

    Raducan A, Mirica S, Duicu O, Raducan S, Muntean D, Fira-Mladinescu O, Lighezan R. Morphological and functional aspects of sciatic nerve regeneration after crush injury. Rom J Morphol Embryol 2013; 54: 735-739.

  • 24.

    Onger ME, Kaplan S, Deniz OG, Altun G, Altunkaynak BZ, Balci K, et al. Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J Chem Neuroanat 2017; 81: 34-41. https://doi.org/10.1016/j.jchemneu.2017.02.003 PMid:28163216.

  • 25.

    Safakhah HA, Moradi Kor N, Bazargani A, Bandegi AR, Gholami Pourbadie H, Khoshkholgh-Sima B, Ghanbari A. Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J Pain Res 2017; 10: 1457-1466. https://doi.org/10.2147/JPR.S135081 PMid:28721088 PMCid:PMC5499951.

  • 26.

    Naderi Tehrani M, Heydari A, Nasrollahi S, Esmaili Z, Hamidi G. Effect of acute caffeine administration on hyperalgesia and allodynia in a rat neuropathic pain model. Koomesh 2020; 22: 334-340. (Persian). https://doi.org/10.29252/koomesh.22.2.334.

  • 27.

    Safakhah HA, Jarrahi M, Rashidy-pour A, Bandegi AR, Khazani F. Combined effect of chronic progesterone administration with compulsive exercise on prevention of TNF- production and abnormal electrophysiological responses of sciatic nerve in Chronic Constriction injury pain model in rat. Koomesh 2021; 23: 95-104. (Persian). https://doi.org/10.29252/koomesh.23.1.95.

  • 28.

    Ghanbari A, Shahsavan F, Safakhah HA. Evaluation of new method to induce neuritis and comparison its symptoms with current chronic constriction injury method in male rat. Koomesh 2021; 23: 117-123. (Persian). https://doi.org/10.29252/koomesh.23.1.117.

  • 29.

    Zychowska M, Rojewska E, Makuch W, Luvisetto S, Pavone F, Marinelli S, et al. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2016; 791: 377-388. https://doi.org/10.1016/j.ejphar.2016.09.019 PMid:27619001.

  • 30.

    Carullo G, Cappello AR, Frattaruolo L, Badolato M, Armentano B, Aiello F. Quercetin and derivatives: useful tools in inflammation and pain management. Future Med Chem 2017; 9: 79-93. https://doi.org/10.4155/fmc-2016-0186 PMid:27995808.

  • 31.

    Ullah MZ, Khan AU, Afridi R, Rasheed H, Khalid S, Naveed M, et al. Attenuation of inflammatory pain by puerarin in animal model of inflammation through inhibition of pro-inflammatory mediators. Int Immunopharmacol 2018; 61: 306-316. https://doi.org/10.1016/j.intimp.2018.05.034 PMid:29909234.

  • 32.

    Ghadge GA, Gourishetti K, Chamallamudi MR, Nampurath GK, Nandakumar K, Kumar N. Sesamol protects MIN6 pancreatic beta cells against simvastatin-induced toxicity by restoring mitochondrial membrane potentials. 3 Biotech 2020; 10: 149. https://doi.org/10.1007/s13205-020-2146-1 PMid:32181111 PMCid:PMC7052092.

  • 33.

    Chandrasekaran VR, Hsu DZ, Liu MY. The protective effect of sesamol against mitochondrial oxidative stress and hepatic injury in acetaminophen-overdosed rats. Shock 2009; 32: 89-93. https://doi.org/10.1097/SHK.0b013e31818ede6f PMid:18948843.

  • 34.

    Vennila L, Pugalendi KV. Protective effect of sesamol against myocardial infarction caused by isoproterenol in Wistar rats. Redox Rep 2010; 15: 36-42. https://doi.org/10.1179/174329210X12650506623168 PMid:20196927 PMCid:PMC7067323.

  • 35.

    Khanmohammadi N, Movahedin M, Safari M, Sameni HR, Yousefi B, Jafari B, Zarbakhsh S. Effect of L-carnitine on in vitro developmental rate, the zona pellucida and hatching of blastocysts and their cell numbers in mouse embryos. Int J Reprod Biomed (Yazd) 2016; 14: 649-656. (Persian). https://doi.org/10.29252/ijrm.14.10.649.

  • 36.

    Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev 2012; 70: 257-265. https://doi.org/10.1111/j.1753-4887.2012.00476.x PMid:22537212.

  • 37.

    Zarbakhsh S. Effect of antioxidants on preimplantation embryo development in vitro: a review. Zygote 2021; 1-15. https://doi.org/10.1017/S0967199420000660 PMid:33441217.

  • 38.

    Hsu CC, Huang HC, Wu PT, Tai TW, Jou IM. Sesame oil improves functional recovery by attenuating nerve oxidative stress in a mouse model of acute peripheral nerve injury: role of Nrf-2. J Nutr Biochem 2016; 38: 102-106. https://doi.org/10.1016/j.jnutbio.2016.09.003 PMid:27732910.

  • 39.

    Parihar VK, Prabhakar KR, Veerapur VP, Kumar MS, Reddy YR, Joshi R, et al. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutat Res 2006; 611: 9-16. https://doi.org/10.1016/j.mrgentox.2006.06.037 PMid:17045515.

  • 40.

    Ren B, Yuan T, Zhang X, Wang L, Pan J, Liu Y, et al. Protective effects of sesamol on systemic inflammation and cognitive impairment in aging mice. J Agric Food Chem 2020; 68: 3099-3111. https://doi.org/10.1021/acs.jafc.9b07598 PMid:32067456.

  • 41.

    Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, et al. An appraisal of current pharmacological perspectives of sesamol: A Review. Mini Rev Med Chem 2020; 20: 988-1000. https://doi.org/10.2174/1389557520666200313120419 PMid:32167426.

  • 42.

    Zhang P, Wang Y, Wang H, Cao J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021; 32: 105-111. https://doi.org/10.1097/WNR.0000000000001564 PMid:33323839.

  • 43.

    Sommer C, Leinders M, Uceyler N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018; 159: 595-602. https://doi.org/10.1097/j.pain.0000000000001122 PMid:29447138.

  • 44.

    Ren B, Yuan T, Diao Z, Zhang C, Liu Z, Liu X. Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments via regulation of Nrf2/Keap1 pathway. Food Funct 2018; 9: 5912-5924. https://doi.org/10.1039/C8FO01436A PMid:30375618.

  • 45.

    Lin Z, Liu F, Shi P, Song A, Huang Z, Zou D, et al. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res Ther 2018; 9: 47. https://doi.org/10.1186/s13287-018-0873-6 https://doi.org/10.1186/s13287-018-0792-6 PMid:29482657 PMCid:PMC5937047.

  • 46.

    Xu HY, Yu L, Chen JH, Yang LN, Lin C, Shi XQ, Qin H. Sesamol alleviates obesity-related hepatic steatosis via activating hepatic PKA pathway. Nutrients 2020; 12. https://doi.org/10.3390/nu12020329 PMid:31991934 PMCid:PMC7071159.

  • 47.

    Nayak PG, Paul P, Bansal P, Kutty NG, Pai KS. Sesamol prevents doxorubicin-induced oxidative damage and toxicity on H9c2 cardiomyoblasts. J Pharm Pharmacol 2013; 65: 1083-1093. https://doi.org/10.1111/jphp.12073 PMid:23738736.