-
1.
Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26(11):1774-7. doi: 10.1200/JCO.2007.15.7438. [PubMed: 18398141].
-
2.
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Novel antigens of CAR T cell therapy: New roads; old destination. Transl Oncol. 2021;14(7):101079. doi: 10.1016/j.tranon.2021.101079. [PubMed: 33862524]. [PubMed Central: PMC8065293].
-
3.
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S. Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol. 2021;11:627549. doi: 10.3389/fonc.2021.627549. [PubMed: 33869011]. [PubMed Central: PMC8047470].
-
4.
Hashem Boroojerdi M, Rahbarizadeh F, Safarzadeh Kozani P, Kamali E, Safarzadeh Kozani P. Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol. 2020;37(11):100. doi: 10.1007/s12032-020-01416-3. [PubMed: 33047234]. [PubMed Central: PMC7549730].
-
5.
Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen En Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release. 2013;172(3):607-17. doi: 10.1016/j.jconrel.2013.08.298. [PubMed: 24035975].
-
6.
Oldfield V, Dhillon S, Plosker GL. Tocilizumab: A review of its use in the management of rheumatoid arthritis. Drugs. 2009;69(5):609-32. doi: 10.2165/00003495-200969050-00007. [PubMed: 19368420].
-
7.
Shepard HM, Phillips GL, D. Thanos C, Feldmann M. Developments in therapy with monoclonal antibodies and related proteins. Clin Med. 2017;17(3):220-32. doi: 10.7861/clinmedicine.17-3-220. [PubMed: 28572223]. [PubMed Central: PMC6297577].
-
8.
Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 2019;11(11). doi: 10.3390/cancers11111756. [PubMed: 31717326]. [PubMed Central: PMC6895894].
-
9.
Koustas E, Karamouzis MV, Mihailidou C, Schizas D, Papavassiliou AG. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett. 2017;396:94-102. doi: 10.1016/j.canlet.2017.03.023. [PubMed: 28323034].
-
10.
Holz E, Raab R, Riethmuller G. Antibody-based immunotherapeutic strategies in colorectal cancer. Recent Results Cancer Res. 1996;142:381-400. doi: 10.1007/978-3-642-80035-1_21. [PubMed: 8893351].
-
11.
Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13(3):235-44. doi: 10.1016/j.cbpa.2009.03.023. [PubMed: 19414278].
-
12.
Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: A new tool for cancer therapy. Tumour Biol. 2017;39(2):1010428317692230. doi: 10.1177/1010428317692226. [PubMed: 28218037].
-
13.
Darwish WM, Bayoumi NA, El-Shershaby HM, Allahloubi NM. Targeted photoimmunotherapy based on photosensitizer-antibody conjugates for multiple myeloma treatment. J Photochem Photobiol B. 2020;203:111777. doi: 10.1016/j.jphotobiol.2020.111777. [PubMed: 31931387].
-
14.
Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine. 2013;8:4215-27. doi: 10.2147/IJN.S39428. [PubMed: 24204148]. [PubMed Central: PMC3818023].
-
15.
Baker JH, Lindquist KE, Huxham LA, Kyle AH, Sy JT, Minchinton AI. Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin Cancer Res. 2008;14(7):2171-9. doi: 10.1158/1078-0432.CCR-07-4465. [PubMed: 18381959].
-
16.
Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm. 2009;24(2):155-61. doi: 10.1089/cbr.2009.0627. [PubMed: 19409036]. [PubMed Central: PMC2902227].
-
17.
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody structure and function: The basis for engineering therapeutics. Antibodies. 2019;8(4). doi: 10.3390/antib8040055. [PubMed: 31816964]. [PubMed Central: PMC6963682].
-
18.
Bell A, Wang ZJ, Arbabi-Ghahroudi M, Chang TA, Durocher Y, Trojahn U, et al. Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett. 2010;289(1):81-90. doi: 10.1016/j.canlet.2009.08.003. [PubMed: 19716651].
-
19.
Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446-8. doi: 10.1038/363446a0. [PubMed: 8502296].
-
20.
Padlan EA. Anatomy of the antibody molecule. Mol Immunol. 1994;31(3):169-217. doi: 10.1016/0161-5890(94)90001-9. [PubMed: 8114766].
-
21.
Jovcevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11-26. doi: 10.1007/s40259-019-00392-z. [PubMed: 31686399]. [PubMed Central: PMC6985073].
-
22.
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603. doi: 10.3389/fimmu.2017.01603. [PubMed: 29213270]. [PubMed Central: PMC5702627].
-
23.
Tanha J, Xu P, Chen Z, Ni F, Kaplan H, Narang SA, et al. Optimal design features of camelized human single-domain antibody libraries. J Biol Chem. 2001;276(27):24774-80. doi: 10.1074/jbc.M100770200. [PubMed: 11335716].
-
24.
van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta. 1999;1431(1):37-46. doi: 10.1016/s0167-4838(99)00030-8. [PubMed: 10209277].
-
25.
Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM. Nanobody-based cancer therapy of solid tumors. Nanomedicine. 2015;10(1):161-74. doi: 10.2217/nnm.14.178. [PubMed: 25597775].
-
26.
Fang T, Lu X, Berger D, Gmeiner C, Cho J, Schalek R, et al. Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods. 2018;15(12):1029-32. doi: 10.1038/s41592-018-0177-x. [PubMed: 30397326]. [PubMed Central: PMC6405223].
-
27.
Tijink BM, Laeremans T, Budde M, Stigter-van Walsum M, Dreier T, de Haard HJ, et al. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology. Mol Cancer Ther. 2008;7(8):2288-97. doi: 10.1158/1535-7163.MCT-07-2384. [PubMed: 18723476].
-
28.
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current approaches and future perspectives for nanobodies in stroke diagnostic and therapy. Antibodies. 2019;8(1). doi: 10.3390/antib8010005. [PubMed: 31544811]. [PubMed Central: PMC6640704].
-
29.
Ingram JR, Blomberg OS, Rashidian M, Ali L, Garforth S, Fedorov E, et al. Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proc Natl Acad Sci U S A. 2018;115(15):3912-7. doi: 10.1073/pnas.1801524115. [PubMed: 29581255]. [PubMed Central: PMC5899492].
-
30.
Romao E, Krasniqi A, Maes L, Vandenbrande C, Sterckx YG, Stijlemans B, et al. Identification of nanobodies against the acute myeloid leukemia marker CD33. Int J Mol Sci. 2020;21(1). doi: 10.3390/ijms21010310. [PubMed: 31906437]. [PubMed Central: PMC6981622].
-
31.
Kijanka M, Warnders FJ, El Khattabi M, Lub-de Hooge M, van Dam GM, Ntziachristos V, et al. Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery. Eur J Nucl Med Mol Imaging. 2013;40(11):1718-29. doi: 10.1007/s00259-013-2471-2. [PubMed: 23778558].
-
32.
Banihashemi SR, Hosseini AZ, Rahbarizadeh F, Ahmadvand D. Development of specific nanobodies (VHH) for CD19 immuno-targeting of human B-lymphocytes. Iran J Basic Med Sci. 2018;21(5):455-64. doi: 10.22038/IJBMS.2018.26778.6557. [PubMed: 29922424]. [PubMed Central: PMC6000210].
-
33.
Rahbarizadeh F, Rasaee MJ, Forouzandeh Moghadam M, Allameh AA, Sadroddiny E. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics. 2004;23(3):151-9. doi: 10.1089/1536859041224334. [PubMed: 15312305].
-
34.
Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh A, Sarrami R, Nasiry H, et al. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol Invest. 2005;34(4):431-52. doi: 10.1080/08820130500265356. [PubMed: 16302687].
-
35.
Maussang D, Mujic-Delic A, Descamps FJ, Stortelers C, Vanlandschoot P, Stigter-van Walsum M, et al. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem. 2013;288(41):29562-72. doi: 10.1074/jbc.M113.498436. [PubMed: 23979133]. [PubMed Central: PMC3795254].
-
36.
Ji X, Peng Z, Li X, Yan Z, Yang Y, Qiao Z, et al. Neutralization of TNFalpha in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer. Cancer Lett. 2017;386:24-34. doi: 10.1016/j.canlet.2016.10.031. [PubMed: 27832973].
-
37.
Van Elssen C, Rashidian M, Vrbanac V, Wucherpfennig KW, Habre ZE, Sticht J, et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J Nucl Med. 2017;58(6):1003-8. doi: 10.2967/jnumed.116.186007. [PubMed: 28209904]. [PubMed Central: PMC5450362].
-
38.
Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, et al. Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget. 2017;8(26):41932-46. doi: 10.18632/oncotarget.16708. [PubMed: 28410210]. [PubMed Central: PMC5522039].
-
39.
Broos K, Lecocq Q, Xavier C, Bridoux J, Nguyen TT, Corthals J, et al. Evaluating a single domain antibody targeting human PD-L1 as a nuclear imaging and therapeutic agent. Cancers. 2019;11(6). doi: 10.3390/cancers11060872. [PubMed: 31234464]. [PubMed Central: PMC6628009].
-
40.
Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64(8):2853-7. doi: 10.1158/0008-5472.can-03-3935. [PubMed: 15087403].
-
41.
Kaliberov SA, Kaliberova LN, Buggio M, Tremblay JM, Shoemaker CB, Curiel DT. Adenoviral targeting using genetically incorporated camelid single variable domains. Lab Invest. 2014;94(8):893-905. doi: 10.1038/labinvest.2014.82. [PubMed: 24933423]. [PubMed Central: PMC4157633].
-
42.
Ma L, Zhu M, Gai J, Li G, Chang Q, Qiao P, et al. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology. 2020;18(1):12. doi: 10.1186/s12951-020-0571-2. [PubMed: 31931812]. [PubMed Central: PMC6956557].
-
43.
Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, et al. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Int J Biol Markers. 2014;29(2):e169-79. doi: 10.5301/jbm.5000063. [PubMed: 24425321].
-
44.
Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem. 2004;279(50):51965-72. doi: 10.1074/jbc.M409292200. [PubMed: 15459193].
-
45.
Fumey W, Koenigsdorf J, Kunick V, Menzel S, Schutze K, Unger M, et al. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38(+) tumors in mouse models in vivo. Sci Rep. 2017;7(1):14289. doi: 10.1038/s41598-017-14112-6. [PubMed: 29084989]. [PubMed Central: PMC5662768].
-
46.
Bradley ME, Dombrecht B, Manini J, Willis J, Vlerick D, De Taeye S, et al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol Pharmacol. 2015;87(2):251-62. doi: 10.1124/mol.114.094821. [PubMed: 25468882].
-
47.
Tang J, Li J, Zhu X, Yu Y, Chen D, Yuan L, et al. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget. 2016;7(23):34070-83. doi: 10.18632/oncotarget.8710. [PubMed: 27083001]. [PubMed Central: PMC5085138].
-
48.
Rossotti M, Tabares S, Alfaya L, Leizagoyen C, Moron G, Gonzalez-Sapienza G. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. Biochim Biophys Acta. 2015;1850(7):1397-404. doi: 10.1016/j.bbagen.2015.03.009. [PubMed: 25819371]. [PubMed Central: PMC4439928].
-
49.
Araste F, Ebrahimizadeh W, Rasooli I, Rajabibazl M, Mousavi Gargari SL. A novel VHH nanobody against the active site (the CA domain) of tumor-associated, carbonic anhydrase isoform IX and its usefulness for cancer diagnosis. Biotechnol Lett. 2014;36(1):21-8. doi: 10.1007/s10529-013-1340-1. [PubMed: 24068505].
-
50.
Ibanez LI, De Filette M, Hultberg A, Verrips T, Temperton N, Weiss RA, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis. 2011;203(8):1063-72. doi: 10.1093/infdis/jiq168. [PubMed: 21450996].
-
51.
Hussack G, Arbabi-Ghahroudi M, van Faassen H, Songer JG, Ng KK, MacKenzie R, et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem. 2011;286(11):8961-76. doi: 10.1074/jbc.M110.198754. [PubMed: 21216961]. [PubMed Central: PMC3058971].
-
52.
Harmsen MM, van Solt CB, van Zijderveld-van Bemmel AM, Niewold TA, van Zijderveld FG. Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl Microbiol Biotechnol. 2006;72(3):544-51. doi: 10.1007/s00253-005-0300-7. [PubMed: 16450109].
-
53.
Dolk E, van der Vaart M, Lutje Hulsik D, Vriend G, de Haard H, Spinelli S, et al. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol. 2005;71(1):442-50. doi: 10.1128/AEM.71.1.442-450.2005. [PubMed: 15640220]. [PubMed Central: PMC544197].
-
54.
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181(5):1004-1015 e15. doi: 10.1016/j.cell.2020.04.031. [PubMed: 32375025]. [PubMed Central: PMC7199733].
-
55.
Wu T, Liu M, Huang H, Sheng Y, Xiao H, Liu Y. Clustered nanobody-drug conjugates for targeted cancer therapy. Chem Commun. 2020;56(65):9344-7. doi: 10.1039/d0cc03396k. [PubMed: 32672289].
-
56.
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-33. doi: 10.1056/NEJMoa1606774. [PubMed: 27718847].
-
57.
Schmid P, Cortes J, Pusztai L, McArthur H, Kummel S, Bergh J, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810-21. doi: 10.1056/NEJMoa1910549. [PubMed: 32101663].
-
58.
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J Hematol Oncol. 2018;11(1):39. doi: 10.1186/s13045-018-0582-8. [PubMed: 29544515]. [PubMed Central: PMC5856308].
-
59.
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14(1):45. doi: 10.1186/s13045-021-01056-8. [PubMed: 33741032]. [PubMed Central: PMC7977302].
-
60.
Weber J. Immune checkpoint proteins: A new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37(5):430-9. doi: 10.1053/j.seminoncol.2010.09.005. [PubMed: 21074057].
-
61.
Zhang F, Wei H, Wang X, Bai Y, Wang P, Wu J, et al. Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov. 2017;3:17004. doi: 10.1038/celldisc.2017.4. [PubMed: 28280600]. [PubMed Central: PMC5341541].
-
62.
Ma L, Gai J, Qiao P, Li Y, Li X, Zhu M, et al. A novel bispecific nanobody with PD-L1/TIGIT dual immune checkpoint blockade. Biochem Biophys Res Commun. 2020;531(2):144-51. doi: 10.1016/j.bbrc.2020.07.072. [PubMed: 32782142].
-
63.
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, et al. Aptamer-based targeted drug delivery systems: Current potential and challenges. Curr Med Chem. 2020;27(13):2189-219. doi: 10.2174/0929867325666181008142831. [PubMed: 30295183].
-
64.
Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: Formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):519-30. doi: 10.1080/03639045.2017.1278768. [PubMed: 28049357].
-
65.
Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 2016;5:31053. doi: 10.3402/jev.v5.31053. [PubMed: 26979463]. [PubMed Central: PMC4793259].
-
66.
Liu Y, Scrivano L, Peterson JD, Fens M, Hernandez IB, Mesquita B, et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol Pharm. 2020;17(4):1276-92. doi: 10.1021/acs.molpharmaceut.9b01280. [PubMed: 32142290]. [PubMed Central: PMC7140040].
-
67.
van der Meel R, Oliveira S, Altintas I, Haselberg R, van der Veeken J, Roovers RC, et al. Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J Control Release. 2012;159(2):281-9. doi: 10.1016/j.jconrel.2011.12.027. [PubMed: 22227023].
-
68.
Duggan S. Caplacizumab: First global approval. Drugs. 2018;78(15):1639-42. doi: 10.1007/s40265-018-0989-0. [PubMed: 30298461]. [PubMed Central: PMC6280848].
-
69.
Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M, Kazemi-Lomedasht F. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal. 2020;12(1):92-100. doi: 10.1002/dta.2693. [PubMed: 31476257].
-
70.
Rahbarizadeh F, Ahmadvand D, Moghimi SM. CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 2019;141:41-6. doi: 10.1016/j.addr.2019.04.006. [PubMed: 31004624].
LEAVE A COMMENT HERE: