Abstract
Objective: The objective of this study was to design and develop a lornoxicam-loaded matrix-type transdermal films with different permeation enhancers and determine their physicochemical characteristics.
Materials and Methods: Lornoxicam-loaded transdermal films were prepared by the solvent evaporation technique. The Fourier transform infrared spectroscopic studies were performed to determine the drug–excipient interactions. Six formulations were prepared with different permeation enhancers such as propylene glycol, dimethylformamide, dimethyl sulfoxide (DMSO), sodium lauryl sulfate, Span 20, and TWEEN 80 by using 500 mg of sodium alginate as the polymer and 60% w/w glycerin as the plasticizer. The prepared formulations were evaluated for thickness, uniformity of weight, moisture loss, moisture uptake, drug content, and tensile strength. The effect of different permeation enhancers on diffusion was determined through a shed snakeskin by using Franz diffusion cells.
Results: The preformulation studies conducted were fulfilled to design a matrix-type transdermal film. In vitro diffusion 24 h indicated that the steady state flux were in the order of F3 > F2 > F1 > F6 > F5 > F4. It was observed that the film prepared with DMSO showed higher diffusion than the formulations with other permeation enhancers.
Conclusion: It was concluded that permeation enhancer to prepare lornoxicam-loaded matrix-type transdermal film to improve patient compliance.
Keywords
Dimethyl sulfoxide glycerin lornoxicam sodium alginate transdermal drug delivery systems